Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cattle with missing cervical vertebra - scientists elucidate phenomenon of evolutionary biology relevance

26.01.2015

Genetic defect is causal for mysterious disease

Cattle breeders had been puzzled. For some time they had observed calves with shortened tails in some Holstein cattle herds. Some calves developed normal; others showed health problems, e.g. a hobbling gait.


Recollection to a thrilling search for clues

Photo: FBN/Joachim Kloock

Some animals were even unable to stand up. This was two years ago, when the Förderverein Biotechnologieforschung, the umbrella organisation of the German pig and cattle breeding and insemination associations, approached the Leibniz Institute for Farm Animal Biology (FBN) to investigate the unknown disease and to reveal its origin.

Under the lead of Prof. Christa Kühn, the scientists in Dummerstorf detected a phenomenon of evolutionary biology relevance, and, together with colleagues from the Tierärztliche Hochschule Hannover (www.tiho-hannover.de), solved the mystery of the disease. The results from their work applying latest molecular genetic tools were now published in the renowned scientific journal Genetics (http://www.genetics.org).

“Initially the veterinary surgeon Dr. Andreas Kromik had investigated suspicious calves and mates of the same age and sex on affected farms. During this endeavour, the farmers and cattle breeding associations strongly supported our work right from the beginning” highlighted Prof. Dr. Christa Kühn from the Institute of Genome Biology of the FBN. First clinical surveys revealed deformations of the vertebral column and malformations of the spinal cord, e.g., fluid-filled cavities, in addition to the aforesaid shortened tails.

Then, the veterinary surgeons in Hanover made a key observation when meticulously investigating the calves. “Some of the dissected calves had only six instead of the conventional seven cervical vertebrae. This is a violation of the strict rule valid since more than 200 million years that all mammals including humans share seven cervical vertebrae and that this feature is essential for survival. In humans, e.g., new-borns with congenital, non-inherited six cervical vertebrae have an extremely reduced life span.

3 billion genetic pieces – the 21st century needle-in-the-hay-stack challenge

The Leibniz scientists rapidly put up the hypothesis of a genetic defect being causal for this mystery of evolutionary biology, which had not been observed in any other species before. Inherited cases of tail malformations are known in some other species, e.g., in mice, dogs and cats, but no naturally occurring heritable reduction in the number of cervical vertebrae had ever been described before.

“Comparing the genetic material of healthy cattle with that of animals showing the defect, we could filter and sequence the three billion genetic pieces of a cow until we found the mutated chromosomal position that is unequivocally responsible for the defect”, explained Kühn. “Subsequently, we were even able to unambiguously identify the first individual with this mutation. Together with a genetic test, which we developed, this restricted a further spread of the deleterious defect in the cattle population.”

“Mutations in our germ cells are part of our life, in some sense they even are fundamental for biological diversity on our planet”, said Kühn, who recently took up a Professorship for Genetics of Disease Resistance at the University of Rostock. “These mutations happen; some have no, some have advantageous and some, like in this case, have very harmful negative consequences.

All living organisms, including humans, carry mutations. It is important, how we deal with them, especially in animal breeding, where we are responsible for the animals entrusted to our care. The very close and supportive collaboration of the partners within this project shows that together we can elucidate the background of such rare phenomenons and provide solutions for their handling.

*The Mammalian Cervical Vertebrae Blueprint Depends on the T (brachyury) Gene
http://www.genetics.org/content/early/recent
Genetics genetics.114.169680; Early online January 22, 2015, doi: 10.1534/genetics.114.169680

Photos FBN/Joachim Kloock:
Recollection to a thrilling search for clues – Prof. Christa Kühn demonstrates the six cervical vertebrae of a sire. His dam was the founding animal for dissemination of the mutation.

Leibniz-Institut für Nutztierbiologie (FBN)
Wilhelm-Stahl-Allee 2, 18196 Dummerstorf
Institut für Genombiologie
Abteilungsleiterin Genomphysiologie: Prof. Dr. Christa Kühn
E kuehn@fbn-dummerstorf.de
T +49 38208-68 709

Wissenschaftsorganisation Dr. Norbert K. Borowy
Wilhelm-Stahl-Allee 2, 18196 Dummerstorf
T +49 38208-68 605
E borowy@fbn-dummerstorf.de
http://www.fbn-dummerstorf.de

 

Norbert K. Borowy | Leibniz-Institut für Nutzierbiologie (FBN)

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>