Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching and releasing tiny molecules

24.03.2015

New technique for sorting biomolecules could lead to efficient clinical diagnostics and chemical purification

Employing an ingenious microfluidic design that combines chemical and mechanical properties, a team of Harvard scientists has demonstrated a new way of detecting and extracting biomolecules from fluid mixtures. The approach requires fewer steps, uses less energy, and achieves better performance than several techniques currently in use and could lead to better technologies for medical diagnostics and chemical purification.


Capture and release of specific target biomolecules from an ingoing solution mixture in a microfluidic system occurs by the concerted, dynamic and reversible action of hydrogel volume change and aptamer bind-and-release through changes in solution pH.

Image courtesy of Ankita Shastri and Ximin He

The biomolecule sorting technique was developed in the laboratory of Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at Harvard School of Engineering and Applied Sciences (SEAS) and Professor in the Department of Chemistry and Chemical Biology. Aizenberg is also co-director of the Kavli Institute for Bionano Science and Technology and a core faculty member at Harvard's Wyss Institute for Biologically Inspired Engineering, leading the Adaptive Materials Technologies platform there.

The new microfluidic device, described in a paper appearing today in the journal Nature Chemistry, is composed of microscopic "fins" embedded in a hydrogel that is able to respond to different stimuli, such as temperature, pH, and light. Special DNA strands called aptamers, that under the right conditions bind to a specific target molecule, are attached to the fins, which move the cargo between two chemically distinct environments. Modulating the pH levels of the solutions in those environments triggers the aptamers to "catch" or "release" the target biomolecule.

After using computer simulations to test their novel approach, in collaboration with Prof. Anna C. Balazs from the University of Pittsburgh, Aizenberg's team conducted proof-of-concept experiments in which they successfully separated thrombin, an enzyme in blood plasma that causes the clotting of blood, from several mixtures of proteins. Their research suggests that the technique could be applicable to other biomolecules, or used to determine chemical purity and other characteristics in inorganic and synthetic chemistry.

"Our adaptive hybrid sorting system presents an efficient chemo-mechanical transductor, capable of highly selective separation of a target species from a complex mixture--all without destructive chemical modifications and high-energy inputs," Aizenberg said. "This new approach holds promise for the next-generation, energy-efficient separation and purification technologies and medical diagnostics."

The system is dynamic; its integrated components are highly tunable. For example, the chemistry of the hydrogel can be modified to respond to changes in temperature, light, electric and magnetic fields, and ionic concentration. Aptamers, meanwhile, can target a range of proteins and molecules in response to variations in pH levels, temperature, and salt.

"The system allows repeated processing of a single input solution, which enables multiple recycling and a high rate of capture of the target molecules," said lead author Ximin He, Assistant Professor of Materials Science and Engineering at Arizona State University and formerly a postdoctoral research fellow in Aizenberg's group at Harvard.

Conventional biomolecule sorting systems rely on external electric fields, infrared radiation, and magnetic fields, and often require chemical modifications of the biomolecules of interest. That means setups can be used only once or require a series of sequential steps. In contrast, said Ankita Shastri, a graduate student in Chemistry and Chemical Biology at Harvard and a member of Aizenberg's group, the new catch-transport-and-release system "is more efficient--requiring minimal steps and less energy, and effective--achieving recovery of almost all of the target biomolecule through its continuous reusability."

The authors say that the system could provide a means of removing contaminants from water--and even be tailored to enable energy-efficient desalination of seawater. It could also be used to capture valuable minerals from fluid mixtures.

###

Other contributors to the work include Lynn M. McGregor and Yolanda Vasquez from Harvard University; Ya Liu, Amitabh Bhattacharya, Yongting Ma, and Olga Kuksenok from the University of Pittsburgh; Valerie Harris, Hanqing Nan, and Maritza Mujica from Arizona State University; and Michael Aizenberg from the Wyss Institute.

The research was supported by the U.S. Department of Energy (DE-SC0005247).

Paul Karoff | EurekAlert!

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>