Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carefully crafted light pulses control neuron activity

20.11.2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Chemists have used such carefully crafted light beams, called coherent control, to regulate chemical reactions, but this study is the first demonstration of using them to control function in a living cell. The study used optogenetic mouse neurons - that is, cells that had a gene added to make them respond to light. However, the researchers say the same technique could be used on cells that are naturally responsive to light, such as those in the retina.


Illinois researchers used ultrafast pulses of tailored light to make neurons fire in different patterns, the first example of coherent control in a living cell.

Image courtesy of Stephen Boppart, University of Illinois

"The saying, 'The eye is the window to the soul' has some merit, because our bodies respond to light. Photoreceptors in our retinas connect to different parts in the brain that control mood, metabolic rhythms and circadian rhythms," said Dr. Stephen Boppart, the leader of the study published in the journal Nature Physics. Boppart is an Illinois professor of electrical and computer engineering and of bioengineering, and also is a medical doctor.

The researchers used light to excite a light-sensitive channel in the membrane of neurons. When the channels were excited, they allowed ions through, which caused the neurons to fire.

While most biological systems in nature are accustomed to the continuous light from the sun, Boppart's team used a flurry of very short light pulses - less than 100 femtoseconds. This delivers a lot of energy in a short period of time, exciting the molecules to different energy states. Along with controlling the length of the light pulses, Boppart's team controls the order of wavelengths in each light pulse.

"When you have an ultrashort or ultrafast pulse of light, there's many colors in that pulse. We can control which colors come first and how bright each color will be," Boppart said. "For example, blue wavelengths are much higher energy than red wavelengths. If we choose which color comes first, we can control what energy the molecule sees at what time, to drive the excitement higher or back down to the base line. If we create a pulse where the red comes before the blue, it's very different than if the blue comes before the red."

The researchers demonstrated using patterns of tailored light pulses to make the neurons fire in different patterns.

Boppart says coherent control could give optogenetics studies more flexibility, since changing properties of the light used can give researchers more avenues than having to engineer mice with new genes every time they want a different neuron behavior.

Outside of optogenetics, the researchers are working to test their coherent control technique with naturally light-responsive cells and processes - retinal cells and photosynthesis, for example.

"What we're doing for the very first time is using light and coherent control to regulate biological function. This is fundamentally more universal than optogenetics - that's just the first example we used," Boppart said. "Ultimately, this could be a gene-free, drug-free way of regulating cell and tissue function. We think there could be 'opto-ceuticals,' methods of treating patients with light."

###

Editor's notes: To reach Stephen Boppart, call 217-244-7479; email: boppart@illinois.edu.

The paper "Coherent control of an opsin in living brain tissue" is available online. DOI: 10.1038/nphys4257

Media Contact

Liz Ahlberg Touchstone
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg Touchstone | EurekAlert!

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>