Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon conversion

07.08.2017

A new additive helps researchers more selectively convert CO2 to multicarbon fuels

Chemists have figured out a new, more efficient way to create carbon-based fuels from carbon dioxide (CO2). In chemical reactions performed in the lab, a Caltech team has identified a new additive that helps selectively convert CO2 into fuels containing multiple carbon atoms -- a step toward ultimately making renewable liquid fuels that are not derived from coal or oil.


Illustration of 'artificial photosynthesis,' a process by which sunlight, CO2 , and water are converted in labs to useful fuels. This is the main goal of the Joint Center for Artificial Photosynthesis (JCAP), a US Department of Energy (DOE) Energy Innovation Hub, which seeks to 'secure energy supplies for future generations.'

Credit: JCAP

"The results were quite shocking," says Jonas Peters, Bren Professor of Chemistry at Caltech and director of the Resnick Sustainability Institute, who jointly led the research in collaboration with Theodor Agapie, professor of chemistry at Caltech.

"Usually, in these types of reactions with CO2, you see a lot of by-products like methane and hydrogen. In this case, the reaction was highly selective for the more desirable fuels that contain multiple carbons -- such as ethylene, ethanol, and propanol. We saw an 80 percent conversion to these multi-carbon fuel products, with only 20 percent or so going into hydrogen and methane."

... more about:
»ACS »CO2 »JCAP »carbon atoms »electrode »ethylene

Fuels with multiple carbon atoms are more desirable because they tend to be liquid -- and liquid fuels store more energy per volume than gaseous ones. For instance, propanol, which is liquid and contains three carbon atoms, stores more energy than methane, which is a gas and only has one carbon atom.

The goal of chemists like Peters, Agapie, and their colleagues working at the Joint Center for Artificial Photosynthesis (JCAP), a U. S. Department of Energy (DOE) Energy Innovation Hub, is to artificially create multi-carbon liquid transportation fuels using the widely available ingredients of sunlight, water, and CO2 . The new research, published July 21 in the ACS Central Science, and funded by JCAP, is a step toward that goal.

The study's research was conducted by Caltech postdoctoral scholars Ruud Kortlever and Hsiang-Yun Chen and former postdoc Zhiji Han.

To find the ideal combination for making the multi-carbon fuels, the team experimented with a mix of different chemicals in the lab. They used an aqueous solution and a copper electrode, which served as both a catalyst and source of energy in place of the sun. The group added CO2 to the solution, as well as a class of organic molecules called N-substituted arylpyridiniums, which formed a very thin deposit on the electrode. This film, for reasons that are not understood yet, dramatically improved the fuel-making reaction, selectively producing the desirable chemicals ethanol, ethylene, and propanol.

"It's easy to make hydrogen under these conditions, so usually we see a lot of it," says Agapie. "But we want to disfavor the hydrogen production and favor high-energy density liquid fuels with carbon-carbon bonds, which is exactly what we get in our experiments."

One next step is to figure out how the additives are enhancing the reaction. The researchers also plan to test similar additives to see if they can further improve the selectivity for the desired fuels. Ultimately, this information may help lead to alternate fuels made efficiently from sunlight, CO2, and water--instead of oil.

"Nature has stored solar energy in the form of oil over a long period of earth history via a process that takes millions of years," says Peters. "Chemists would like to figure out how to do this much faster."

###

The ACS Central Science study is titled, "CO2 Reduction Selective for C?2 Products on Polycrystalline Copper with N-substituted Pyridinium Additives.

Media Contact

Whitney Clavin
wclavin@caltech.edu
626-395-1856

 @caltech

http://www.caltech.edu 

Whitney Clavin | EurekAlert!

Further reports about: ACS CO2 JCAP carbon atoms electrode ethylene

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks