Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer research yields unexpected new way to produce nylon

24.09.2012
In their quest for a cancer cure, researchers at the Duke Cancer Institute made a serendipitous discovery -- a molecule necessary for cheaper and greener ways to produce nylon.

The finding, described in the Sept. 23, 2012, issue of the journal Nature Chemical Biology, arose from an intriguing notion that some of the genetic and chemical changes in cancer tumors might be harnessed for beneficial uses.

"In our lab, we study genetic changes that cause healthy tissues to go bad and grow into tumors. The goal of this research is to understand how the tumors develop in order to design better treatments," said Zachary J. Reitman, Ph.D., an associate in research at Duke and lead author of the study. "As it turns out, a bit of information we learned in that process paves the way for a better method to produce nylon."

Nylon is a ubiquitous material, used in carpeting, upholstery, auto parts, apparel and other products. A key component for its production is adipic acid, which is one of the most widely used chemicals in the world. Currently, adipic acid is produced from fossil fuel, and the pollution released from the refinement process is a leading contributor to global warming.

Reitman said he and colleagues delved into the adipic acid problem based on similarities between cancer research techniques and biochemical engineering. Both fields rely on enzymes, which are molecules that convert one small chemical to another. Enzymes play a major role in both healthy tissues and in tumors, but they are also used to convert organic matter into synthetic materials such as adipic acid.

One of the most promising approaches being studied today for environmentally friendly adipic acid production uses a series of enzymes as an assembly line to convert cheap sugars into adipic acid. However, one critical enzyme in the series, called a 2-hydroxyadipate dehydrogenase, has never been produced, leaving a missing link in the assembly line.

This is where the cancer research comes in. In 2008 and 2009, Duke researchers, including Hai Yan, M.D., PhD., identified a genetic mutation in glioblastomas and other brain tumors that alters the function of an enzyme known as an isocitrate dehydrogenase.

Reitman and colleagues had a hunch that the genetic mutation seen in cancer might trigger a similar functional change to a closely related enzyme found in yeast and bacteria (homoisocitrate dehydrogenase), which would create the elusive 2-hydroxyadipate dehydrogenase necessary for "green" adipic acid production.

They were right. The functional mutation observed in cancer could be constructively applied to other closely related enzymes, creating a beneficial outcome – in this case the missing link that could enable adipic acid production from cheap sugars. The next step will be to scale up the overall adipic acid production process, which remains a considerable undertaking.

"It's exciting that sequencing cancer genomes can help us to discover new enzyme activities," Reitman said. "Even genetic changes that occur in only a few patients could reveal useful new enzyme functions that were not obvious before."

Yan, a professor in the Department of Pathology and senior author of the study, said the research demonstrates how an investment in medical research can be applied broadly to solve other significant issues of the day.

"This is the result of a cancer researcher thinking outside the box to produce a new enzyme and create a precursor for nylon production," Yan said. "Not only is this discovery exciting, it reaffirms the commitment we should be making to science and to encouraging young people to pursue science."

In addition to Reitman and Yan, study authors include Bryan D. Choi, Ivan Spasojevic, Darell D. Bigner and John H. Sampson.

The work was supported with funds from the National Institutes of Health (R01 CA1403160). The authors are listed on a patent that is pending related to the mutated enzymes.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>