Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer research yields unexpected new way to produce nylon

24.09.2012
In their quest for a cancer cure, researchers at the Duke Cancer Institute made a serendipitous discovery -- a molecule necessary for cheaper and greener ways to produce nylon.

The finding, described in the Sept. 23, 2012, issue of the journal Nature Chemical Biology, arose from an intriguing notion that some of the genetic and chemical changes in cancer tumors might be harnessed for beneficial uses.

"In our lab, we study genetic changes that cause healthy tissues to go bad and grow into tumors. The goal of this research is to understand how the tumors develop in order to design better treatments," said Zachary J. Reitman, Ph.D., an associate in research at Duke and lead author of the study. "As it turns out, a bit of information we learned in that process paves the way for a better method to produce nylon."

Nylon is a ubiquitous material, used in carpeting, upholstery, auto parts, apparel and other products. A key component for its production is adipic acid, which is one of the most widely used chemicals in the world. Currently, adipic acid is produced from fossil fuel, and the pollution released from the refinement process is a leading contributor to global warming.

Reitman said he and colleagues delved into the adipic acid problem based on similarities between cancer research techniques and biochemical engineering. Both fields rely on enzymes, which are molecules that convert one small chemical to another. Enzymes play a major role in both healthy tissues and in tumors, but they are also used to convert organic matter into synthetic materials such as adipic acid.

One of the most promising approaches being studied today for environmentally friendly adipic acid production uses a series of enzymes as an assembly line to convert cheap sugars into adipic acid. However, one critical enzyme in the series, called a 2-hydroxyadipate dehydrogenase, has never been produced, leaving a missing link in the assembly line.

This is where the cancer research comes in. In 2008 and 2009, Duke researchers, including Hai Yan, M.D., PhD., identified a genetic mutation in glioblastomas and other brain tumors that alters the function of an enzyme known as an isocitrate dehydrogenase.

Reitman and colleagues had a hunch that the genetic mutation seen in cancer might trigger a similar functional change to a closely related enzyme found in yeast and bacteria (homoisocitrate dehydrogenase), which would create the elusive 2-hydroxyadipate dehydrogenase necessary for "green" adipic acid production.

They were right. The functional mutation observed in cancer could be constructively applied to other closely related enzymes, creating a beneficial outcome – in this case the missing link that could enable adipic acid production from cheap sugars. The next step will be to scale up the overall adipic acid production process, which remains a considerable undertaking.

"It's exciting that sequencing cancer genomes can help us to discover new enzyme activities," Reitman said. "Even genetic changes that occur in only a few patients could reveal useful new enzyme functions that were not obvious before."

Yan, a professor in the Department of Pathology and senior author of the study, said the research demonstrates how an investment in medical research can be applied broadly to solve other significant issues of the day.

"This is the result of a cancer researcher thinking outside the box to produce a new enzyme and create a precursor for nylon production," Yan said. "Not only is this discovery exciting, it reaffirms the commitment we should be making to science and to encouraging young people to pursue science."

In addition to Reitman and Yan, study authors include Bryan D. Choi, Ivan Spasojevic, Darell D. Bigner and John H. Sampson.

The work was supported with funds from the National Institutes of Health (R01 CA1403160). The authors are listed on a patent that is pending related to the mutated enzymes.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>