Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer research yields unexpected new way to produce nylon

24.09.2012
In their quest for a cancer cure, researchers at the Duke Cancer Institute made a serendipitous discovery -- a molecule necessary for cheaper and greener ways to produce nylon.

The finding, described in the Sept. 23, 2012, issue of the journal Nature Chemical Biology, arose from an intriguing notion that some of the genetic and chemical changes in cancer tumors might be harnessed for beneficial uses.

"In our lab, we study genetic changes that cause healthy tissues to go bad and grow into tumors. The goal of this research is to understand how the tumors develop in order to design better treatments," said Zachary J. Reitman, Ph.D., an associate in research at Duke and lead author of the study. "As it turns out, a bit of information we learned in that process paves the way for a better method to produce nylon."

Nylon is a ubiquitous material, used in carpeting, upholstery, auto parts, apparel and other products. A key component for its production is adipic acid, which is one of the most widely used chemicals in the world. Currently, adipic acid is produced from fossil fuel, and the pollution released from the refinement process is a leading contributor to global warming.

Reitman said he and colleagues delved into the adipic acid problem based on similarities between cancer research techniques and biochemical engineering. Both fields rely on enzymes, which are molecules that convert one small chemical to another. Enzymes play a major role in both healthy tissues and in tumors, but they are also used to convert organic matter into synthetic materials such as adipic acid.

One of the most promising approaches being studied today for environmentally friendly adipic acid production uses a series of enzymes as an assembly line to convert cheap sugars into adipic acid. However, one critical enzyme in the series, called a 2-hydroxyadipate dehydrogenase, has never been produced, leaving a missing link in the assembly line.

This is where the cancer research comes in. In 2008 and 2009, Duke researchers, including Hai Yan, M.D., PhD., identified a genetic mutation in glioblastomas and other brain tumors that alters the function of an enzyme known as an isocitrate dehydrogenase.

Reitman and colleagues had a hunch that the genetic mutation seen in cancer might trigger a similar functional change to a closely related enzyme found in yeast and bacteria (homoisocitrate dehydrogenase), which would create the elusive 2-hydroxyadipate dehydrogenase necessary for "green" adipic acid production.

They were right. The functional mutation observed in cancer could be constructively applied to other closely related enzymes, creating a beneficial outcome – in this case the missing link that could enable adipic acid production from cheap sugars. The next step will be to scale up the overall adipic acid production process, which remains a considerable undertaking.

"It's exciting that sequencing cancer genomes can help us to discover new enzyme activities," Reitman said. "Even genetic changes that occur in only a few patients could reveal useful new enzyme functions that were not obvious before."

Yan, a professor in the Department of Pathology and senior author of the study, said the research demonstrates how an investment in medical research can be applied broadly to solve other significant issues of the day.

"This is the result of a cancer researcher thinking outside the box to produce a new enzyme and create a precursor for nylon production," Yan said. "Not only is this discovery exciting, it reaffirms the commitment we should be making to science and to encouraging young people to pursue science."

In addition to Reitman and Yan, study authors include Bryan D. Choi, Ivan Spasojevic, Darell D. Bigner and John H. Sampson.

The work was supported with funds from the National Institutes of Health (R01 CA1403160). The authors are listed on a patent that is pending related to the mutated enzymes.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>