Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Research - microRNAs help to predict disease progression in brain tumors

14.06.2016

Scientists at the Helmholtz Zentrum München and the Ludwig Maximilians University of Munich (LMU) have developed a new method of predicting disease progression in gliobastoma patients who have undergone standard treatment. Their findings, published in the journal Oncotarget, show that four miRNAs may hold the vital clue. An application for the corresponding patent has already been filed.

Roughly one fifth of all brain tumors diagnosed by doctors are gliobastomas. This aggressive and most common type of brain tumor continues to present doctors with huge challenges. However, molecular markers could help them to make the right treatment decision.


Irradiation planning of a glioblastoma

Source: Klinikum der Universität München

A team of researchers led by Dr. Kristian Unger, Deputy Head of the Radiation Cytogenetics Research Unit (headed by Prof. Dr. Horst Zitzelsberger) at the Helmholtz Zentrum München, and Prof. Dr. Claus Belka, Director of the Clinic and Policlinic for Radiotherapy and Radiation Oncology at the University of Munich’s Grosshadern Hospital (member of the DKTK cancer research consortium), has now succeeded in identifying specific miRNAs* that could serve as biomarkers for disease progression.

miRNAs indicate a poor prognosis

In collaboration with the Institute of Neurology (Edinger Institute) at the University Hospital Frankfurt, researchers examined the composition of miRNAs in samples from 36 patients from whom tumor material had been removed during treatment, and whose subsequent course of treatment had been well documented. “We repeatedly detected four miRNAs in tumors that had a particularly poor prognosis,” explains PD Dr. Karim-Maximilian Niyazi, senior physician at Grosshadern, and first author of the study.

Based on their data, the scientists calculated a risk score to distinguish two patient groups who were undergoing standard treatment and whose life expectancy varied by about five months. In order to corroborate their findings, they used data obtained from a further 58 independent samples. Here, too, they found that the composition of the miRNAs altered, the worse the prospects of a successful treatment outcome were.

Patent already applied for

The scientists are confident that their observations will have more than mere theoretical implications. For this reason, they have already filed an application for the corresponding patent. “To date only few prognostic and predictive factors for glioblastoma have been identified,” says research team leader Unger.** “Our method could be used to identify candidates for alternative or intensified treatment options, as it is highly unlikely that patients with a high risk score would benefit from standard therapy.”

Since tumor tissue would generally be removed immediately, a corresponding analysis would be relatively easy to conduct and would not require any additional time or expense, the researchers note.

Whether the miRNAs have a malignant function in the cancer cells themselves or are merely an indirect marker remains to be clarified. In initial studies, however, the scientists have shown that miRNAs could possibly even play a role in various processes of tumor development.

Further information:

Background:
* miRNAs or microRNAs are a class of molecules that consist of short sequences of RNA building blocks. In contrast to protein synthesis, however, the RNA is not needed to build molecules. On the contrary, many miRNAs are capable of preventing the production of certain proteins by destroying the respective RNA blueprint. According to estimates, about 2,000 different miRNAs have been identified. However, this relatively young research area is continuing to bring new findings to light.

** To date, only few prognostic factors for glioblastoma have been identified. The most important molecular marker, methylation of the O6-methylguanine transferase (MGMT) promoter region, has been described as a positive predictor for temozolomide-based radiochemotherapy. Up to now little research has been done into miRNA changes in glioblastomas.

Original publication:
Niyazi, M. et al. (2016). A 4-miRNA signature predicts the therapeutic outcome of glioblastoma, Oncotarget, doi: 10.18632/oncotarget.9945
http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=a...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Radiation Cytogenetics (ZYTO) investigates radiation-induced chromosome and DNA damage in cell systems and human tumours. The focus is on clarifying the mechanisms associated with radiation-induced carcinogenesis and radiation sensitivity of tumour cells. The aim of this research is to find biomarkers associated with radiation-induced tumours in order to develop personalized radiation therapy for the stratification of patients. ZYTO is a part of the Department of Radiation Sciences (DRS). http://www.helmholtz-muenchen.de/zyto

As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences. 15 percent of LMU‘s 50,000 students come from abroad, originating from 130 countries worldwide. The know-how and creativity of LMU's academics form the foundation of the University's outstanding research record. This is also reflected in LMU‘s designation of as a "university of excellence" in the context of the Excellence Initiative, a nationwide competition to promote top-level university research. http://www.en.lmu.de

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Dr. Kristian Unger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Radiation Cytogenetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3515, E-mail: unger@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CANCER Cytogenetics Environmental Health brain tumors miRNAs

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>