Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Research - microRNAs help to predict disease progression in brain tumors

14.06.2016

Scientists at the Helmholtz Zentrum München and the Ludwig Maximilians University of Munich (LMU) have developed a new method of predicting disease progression in gliobastoma patients who have undergone standard treatment. Their findings, published in the journal Oncotarget, show that four miRNAs may hold the vital clue. An application for the corresponding patent has already been filed.

Roughly one fifth of all brain tumors diagnosed by doctors are gliobastomas. This aggressive and most common type of brain tumor continues to present doctors with huge challenges. However, molecular markers could help them to make the right treatment decision.


Irradiation planning of a glioblastoma

Source: Klinikum der Universität München

A team of researchers led by Dr. Kristian Unger, Deputy Head of the Radiation Cytogenetics Research Unit (headed by Prof. Dr. Horst Zitzelsberger) at the Helmholtz Zentrum München, and Prof. Dr. Claus Belka, Director of the Clinic and Policlinic for Radiotherapy and Radiation Oncology at the University of Munich’s Grosshadern Hospital (member of the DKTK cancer research consortium), has now succeeded in identifying specific miRNAs* that could serve as biomarkers for disease progression.

miRNAs indicate a poor prognosis

In collaboration with the Institute of Neurology (Edinger Institute) at the University Hospital Frankfurt, researchers examined the composition of miRNAs in samples from 36 patients from whom tumor material had been removed during treatment, and whose subsequent course of treatment had been well documented. “We repeatedly detected four miRNAs in tumors that had a particularly poor prognosis,” explains PD Dr. Karim-Maximilian Niyazi, senior physician at Grosshadern, and first author of the study.

Based on their data, the scientists calculated a risk score to distinguish two patient groups who were undergoing standard treatment and whose life expectancy varied by about five months. In order to corroborate their findings, they used data obtained from a further 58 independent samples. Here, too, they found that the composition of the miRNAs altered, the worse the prospects of a successful treatment outcome were.

Patent already applied for

The scientists are confident that their observations will have more than mere theoretical implications. For this reason, they have already filed an application for the corresponding patent. “To date only few prognostic and predictive factors for glioblastoma have been identified,” says research team leader Unger.** “Our method could be used to identify candidates for alternative or intensified treatment options, as it is highly unlikely that patients with a high risk score would benefit from standard therapy.”

Since tumor tissue would generally be removed immediately, a corresponding analysis would be relatively easy to conduct and would not require any additional time or expense, the researchers note.

Whether the miRNAs have a malignant function in the cancer cells themselves or are merely an indirect marker remains to be clarified. In initial studies, however, the scientists have shown that miRNAs could possibly even play a role in various processes of tumor development.

Further information:

Background:
* miRNAs or microRNAs are a class of molecules that consist of short sequences of RNA building blocks. In contrast to protein synthesis, however, the RNA is not needed to build molecules. On the contrary, many miRNAs are capable of preventing the production of certain proteins by destroying the respective RNA blueprint. According to estimates, about 2,000 different miRNAs have been identified. However, this relatively young research area is continuing to bring new findings to light.

** To date, only few prognostic factors for glioblastoma have been identified. The most important molecular marker, methylation of the O6-methylguanine transferase (MGMT) promoter region, has been described as a positive predictor for temozolomide-based radiochemotherapy. Up to now little research has been done into miRNA changes in glioblastomas.

Original publication:
Niyazi, M. et al. (2016). A 4-miRNA signature predicts the therapeutic outcome of glioblastoma, Oncotarget, doi: 10.18632/oncotarget.9945
http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=a...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Radiation Cytogenetics (ZYTO) investigates radiation-induced chromosome and DNA damage in cell systems and human tumours. The focus is on clarifying the mechanisms associated with radiation-induced carcinogenesis and radiation sensitivity of tumour cells. The aim of this research is to find biomarkers associated with radiation-induced tumours in order to develop personalized radiation therapy for the stratification of patients. ZYTO is a part of the Department of Radiation Sciences (DRS). http://www.helmholtz-muenchen.de/zyto

As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences. 15 percent of LMU‘s 50,000 students come from abroad, originating from 130 countries worldwide. The know-how and creativity of LMU's academics form the foundation of the University's outstanding research record. This is also reflected in LMU‘s designation of as a "university of excellence" in the context of the Excellence Initiative, a nationwide competition to promote top-level university research. http://www.en.lmu.de

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Dr. Kristian Unger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Radiation Cytogenetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3515, E-mail: unger@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CANCER Cytogenetics Environmental Health brain tumors miRNAs

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>