Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer: Molecularly shutting down cancer cachexia

31.08.2016

Healthy fat tissue is essential for extended survival in the event of tumor-induced wasting syndrome (cachexia). In Nature Medicine, researchers at Helmholtz Zentrum München show that selective manipulation of an enzyme can stop unwanted metabolic processes.

Cancer often results in weight loss due to unwanted metabolic complications. This so-called cancer cachexia is accompanied by a poor prognosis with regard to disease progression, quality of life, and mortality. After sepsis, cachexia is the most frequent cause of death in cancer patients. It is not entirely clear which biochemical mechanisms play a role. To date there have also not been any pharmacological possibilities for selectively influencing tumor-associated wasting syndrome.


Molecule model of AMP-activated protein kinase. Source: Nevit Dilmen / Wikipedia / Licence CC BY SA 3.0

Stopping energy wasting molecularly

Researchers at the Institute for Diabetes and Cancer (IDC) at Helmholtz Zentrum München have identified the AMP-activated protein kinase (AMPK) as the central enzyme in cancer cachexia. AMPK is normally responsible for protecting cells from energy deficiency. In the case of cancer cachexia, however, AMPK activity is inhibited due to the illness, resulting in a pointless waste of the body's own energy store.

Selective AMPK reactivation was successfully carried out in tumor models. The therapeutic manipulation took place through a specific peptide which prevents the interaction between AMPK and the lipid droplet-associated protein Cidea, and which consequently can stop the increased fat breakdown (lipolysis) found in tumor diseases.

"Our data suggest that the preservation of "healthy" adipose tissue can promote not only the quality of life, but also the response to treatment and the survival of cancer patients," says Prof. Stephan Herzig, IDC Director. "The interaction between AMPK and Cidea can be taken as a starting point for developing new lipolysis inhibitors which could then prevent the breakdown of energy stores in the fat of tumor patients." He furthermore sees possibilities for transferring the acquired insights to other wasting disorders, such as with sepsis or burn injuries.

Further information

Original publication: Maria Rohm et al. (2016), An AMPK-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, doi:10.1038/nm.4171. Abstract: http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.4171.html

The Helmholtz Zentrum München, as the German Research Center for Environmental Health, pursues the objective of developing personalized medicine for the diagnosis, therapy and prevention of wide-spread diseases such as diabetes mellitus and lung diseases. To this end, it investigates the interactions of genetics, environmental factors and lifestyle. The Zentrum's headquarters is located in Neuherberg in the north of Munich. The Helmholtz Zentrum München employs around 2,300 people and is a member of the Helmholtz Association, which has 18 scientific-technical and biological-medical research centers with around 37,000 employees.
www.helmholtz-muenchen.de

The Institute for Diabetes and Cancer (IDC) is a member of the Helmholtz Diabetes Center (HDC) at the Helmholtz Zentrum München and a partner in the joint Heidelberg-IDC Translational Diabetes Program. The Institute for Diabetes and Cancer is tightly integrated into the German Center for Diabetes Research (DZD) and into the special research area "Reactive Metabolites and Diabetic Complications" at the Heidelberg University Medical School. The IDC conducts research on the molecular basis of severe metabolic disorders, including metabolic syndrome and type 2 diabetes, as well as their roles in tumor initiation and progression. https://www.helmholtz-muenchen.de/idc

Susanne Eichacker | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CANCER Diabetes IDC adipose tissue disorders metabolic quality of life

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>