Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer: Molecularly shutting down cancer cachexia

31.08.2016

Healthy fat tissue is essential for extended survival in the event of tumor-induced wasting syndrome (cachexia). In Nature Medicine, researchers at Helmholtz Zentrum München show that selective manipulation of an enzyme can stop unwanted metabolic processes.

Cancer often results in weight loss due to unwanted metabolic complications. This so-called cancer cachexia is accompanied by a poor prognosis with regard to disease progression, quality of life, and mortality. After sepsis, cachexia is the most frequent cause of death in cancer patients. It is not entirely clear which biochemical mechanisms play a role. To date there have also not been any pharmacological possibilities for selectively influencing tumor-associated wasting syndrome.


Molecule model of AMP-activated protein kinase. Source: Nevit Dilmen / Wikipedia / Licence CC BY SA 3.0

Stopping energy wasting molecularly

Researchers at the Institute for Diabetes and Cancer (IDC) at Helmholtz Zentrum München have identified the AMP-activated protein kinase (AMPK) as the central enzyme in cancer cachexia. AMPK is normally responsible for protecting cells from energy deficiency. In the case of cancer cachexia, however, AMPK activity is inhibited due to the illness, resulting in a pointless waste of the body's own energy store.

Selective AMPK reactivation was successfully carried out in tumor models. The therapeutic manipulation took place through a specific peptide which prevents the interaction between AMPK and the lipid droplet-associated protein Cidea, and which consequently can stop the increased fat breakdown (lipolysis) found in tumor diseases.

"Our data suggest that the preservation of "healthy" adipose tissue can promote not only the quality of life, but also the response to treatment and the survival of cancer patients," says Prof. Stephan Herzig, IDC Director. "The interaction between AMPK and Cidea can be taken as a starting point for developing new lipolysis inhibitors which could then prevent the breakdown of energy stores in the fat of tumor patients." He furthermore sees possibilities for transferring the acquired insights to other wasting disorders, such as with sepsis or burn injuries.

Further information

Original publication: Maria Rohm et al. (2016), An AMPK-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, doi:10.1038/nm.4171. Abstract: http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.4171.html

The Helmholtz Zentrum München, as the German Research Center for Environmental Health, pursues the objective of developing personalized medicine for the diagnosis, therapy and prevention of wide-spread diseases such as diabetes mellitus and lung diseases. To this end, it investigates the interactions of genetics, environmental factors and lifestyle. The Zentrum's headquarters is located in Neuherberg in the north of Munich. The Helmholtz Zentrum München employs around 2,300 people and is a member of the Helmholtz Association, which has 18 scientific-technical and biological-medical research centers with around 37,000 employees.
www.helmholtz-muenchen.de

The Institute for Diabetes and Cancer (IDC) is a member of the Helmholtz Diabetes Center (HDC) at the Helmholtz Zentrum München and a partner in the joint Heidelberg-IDC Translational Diabetes Program. The Institute for Diabetes and Cancer is tightly integrated into the German Center for Diabetes Research (DZD) and into the special research area "Reactive Metabolites and Diabetic Complications" at the Heidelberg University Medical School. The IDC conducts research on the molecular basis of severe metabolic disorders, including metabolic syndrome and type 2 diabetes, as well as their roles in tumor initiation and progression. https://www.helmholtz-muenchen.de/idc

Susanne Eichacker | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CANCER Diabetes IDC adipose tissue disorders metabolic quality of life

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>