Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer drug prolongs life in flies


Trametinib inhibits the same signal pathway in flies and humans and could thus conceivably also extend life expectancy in humans

Humans, yeasts and fruit flies began to evolve separately millions of years ago. Nevertheless, the cellular processes which regulate cell division and cell death – and therefore the mechanism of ageing – are similar in all of them. Scientists at the Max Planck Institute for Biology of Ageing in Cologne and University College London have now succeeded in controlling this mechanism, thus extending life expectancy in fruit flies by around twelve percent.

Older fruitfly (Drosophila melanogaster).

© Nazif Alic

They achieved this with the help of a cancer drug called Trametinib. Human cells contain the same molecular switches that Trametinib targets in fruit flies. It is therefore conceivable that the substance could be used to develop future anti-ageing drugs to extend life expectancy in humans.

To ensure a long and healthy life in humans, researchers have to understand the ageing process at the cellular level more precisely. A scientific study has now shown how Ras proteins can be manipulated to prolong the lifespans of animals.

Ras proteins play a key role in the regulation of cell processes. As molecular switches within the cellular signalling network, they control vital functions such as cell division, cell death, specialisation and metabolism. They regulate these intracellular processes via the Ras-Erk-ETS signal pathway. This network has been conserved over hundreds of millions of years of evolution and is present in single-cell organisms such as yeasts, in insects such as the fruit fly (Drosophila), as well as in mammals such as mice and humans.

It was already known that inhibition of this signal pathway can prolong the life expectancy of yeast cells. However, to achieve this, the scientists had thus far manipulated the DNA directly in order to deactivate individual genes and with them the Ras signal pathway. However, no substance was known that could slow the ageing process at this interface. Recent work by the research team has now filled this gap.

The scientists took advantage of the fact that the Ras-Erk-ETS signal pathway has been thoroughly researched in the context of cancer treatment. This is because overactivation of Ras is carcinogenic: in around a third of cancer patients, the Ras proteins of cancer cells are mutated, resulting in uncontrolled cellular division. Many cancer researchers have therefore focussed on this signal pathway - and the first drugs have already been developed to interfere with Ras signalling in order to check cancerous growth.

The researchers administered one of those substances, Trametinib, to fruit flies in the form of a food additive. Even a small dose, which is approximately equivalent to a daily dose of the drug in a human patient, increased the fruit flies’ average life expectancy by eight percent. With a moderate dose, the flies lived twelve percent longer on average.

Any drug suitable for anti-ageing applications must be effective even if it is administered during an advanced phase of life. The scientists successfully demonstrated this property. In a substudy, they administered the substance for the first time to Drosophila that were 30 days old – a ripe old age for this species. At this point, egg laying, i.e. the insects’ fertile phase, has ceased. Even when a moderate dose of the substance was given to the flies at this late point in their lifespan, it still increased their average life expectancy by seven percent. The researchers observed no adverse effects on the insects’ digestive system or food intake.

“Our findings indicate what substance classes could be used to slow the ageing process in humans,” explains Nazif Alic of University College London. “The Ras-Erk-ETS signal pathway could serve as a target for those substances.” The aim now is to investigate this pathway more closely. “The study suggests that inhibition of this signal pathway has positive effects on longevity and mortality,” says Cathy Slack, who researches at University College London and at the Max Planck Institute for Biology of Ageing. Slack emphasises that Trametinib has been approved by the FDA as a drug for the treatment of skin cancer and is therefore already in clinical use.

In mammals, Ras acts as a mediator for the insulin/IGF-1 signal pathway, which modulates life expectancy. Ras activation has effects on both the PI3/Akt and Erk/Mapk signal pathways. Until now, it was assumed that the PI3/Akt branch is primarily responsible for modulating lifespan. The findings show, however, that the Erk branch is also important in this regard. Two transcription factors controlled by Ras-Erk appear to be key mediators of these effects: Pnt, a gene expression activator, and Aop, a repressor. It therefore appears likely that life expectancy can be regulated via both branches of the signal pathway.


Prof. Dr. Linda Partridge
Max Planck Institute for Biology of Ageing, Köln
Phone: +49 221 37970-602


Scientific and Personal Assistance:
Dr. Christine Lesch

Original publication
Cathy Slack, Nazif Alic, Andrea Foley, Melissa Cabecinha, Matthew P. Hoddinott, and Linda Partridge

The Ras-Erk-ETS signalling pathway is a drug target for longevity

Cell; 25 June, 2015

Prof. Dr. Linda Partridge | Max Planck Institute for Biology of Ageing, Köln
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>