Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer drug prolongs life in flies

29.06.2015

Trametinib inhibits the same signal pathway in flies and humans and could thus conceivably also extend life expectancy in humans

Humans, yeasts and fruit flies began to evolve separately millions of years ago. Nevertheless, the cellular processes which regulate cell division and cell death – and therefore the mechanism of ageing – are similar in all of them. Scientists at the Max Planck Institute for Biology of Ageing in Cologne and University College London have now succeeded in controlling this mechanism, thus extending life expectancy in fruit flies by around twelve percent.


Older fruitfly (Drosophila melanogaster).

© Nazif Alic

They achieved this with the help of a cancer drug called Trametinib. Human cells contain the same molecular switches that Trametinib targets in fruit flies. It is therefore conceivable that the substance could be used to develop future anti-ageing drugs to extend life expectancy in humans.

To ensure a long and healthy life in humans, researchers have to understand the ageing process at the cellular level more precisely. A scientific study has now shown how Ras proteins can be manipulated to prolong the lifespans of animals.

Ras proteins play a key role in the regulation of cell processes. As molecular switches within the cellular signalling network, they control vital functions such as cell division, cell death, specialisation and metabolism. They regulate these intracellular processes via the Ras-Erk-ETS signal pathway. This network has been conserved over hundreds of millions of years of evolution and is present in single-cell organisms such as yeasts, in insects such as the fruit fly (Drosophila), as well as in mammals such as mice and humans.

It was already known that inhibition of this signal pathway can prolong the life expectancy of yeast cells. However, to achieve this, the scientists had thus far manipulated the DNA directly in order to deactivate individual genes and with them the Ras signal pathway. However, no substance was known that could slow the ageing process at this interface. Recent work by the research team has now filled this gap.

The scientists took advantage of the fact that the Ras-Erk-ETS signal pathway has been thoroughly researched in the context of cancer treatment. This is because overactivation of Ras is carcinogenic: in around a third of cancer patients, the Ras proteins of cancer cells are mutated, resulting in uncontrolled cellular division. Many cancer researchers have therefore focussed on this signal pathway - and the first drugs have already been developed to interfere with Ras signalling in order to check cancerous growth.

The researchers administered one of those substances, Trametinib, to fruit flies in the form of a food additive. Even a small dose, which is approximately equivalent to a daily dose of the drug in a human patient, increased the fruit flies’ average life expectancy by eight percent. With a moderate dose, the flies lived twelve percent longer on average.

Any drug suitable for anti-ageing applications must be effective even if it is administered during an advanced phase of life. The scientists successfully demonstrated this property. In a substudy, they administered the substance for the first time to Drosophila that were 30 days old – a ripe old age for this species. At this point, egg laying, i.e. the insects’ fertile phase, has ceased. Even when a moderate dose of the substance was given to the flies at this late point in their lifespan, it still increased their average life expectancy by seven percent. The researchers observed no adverse effects on the insects’ digestive system or food intake.

“Our findings indicate what substance classes could be used to slow the ageing process in humans,” explains Nazif Alic of University College London. “The Ras-Erk-ETS signal pathway could serve as a target for those substances.” The aim now is to investigate this pathway more closely. “The study suggests that inhibition of this signal pathway has positive effects on longevity and mortality,” says Cathy Slack, who researches at University College London and at the Max Planck Institute for Biology of Ageing. Slack emphasises that Trametinib has been approved by the FDA as a drug for the treatment of skin cancer and is therefore already in clinical use.

In mammals, Ras acts as a mediator for the insulin/IGF-1 signal pathway, which modulates life expectancy. Ras activation has effects on both the PI3/Akt and Erk/Mapk signal pathways. Until now, it was assumed that the PI3/Akt branch is primarily responsible for modulating lifespan. The findings show, however, that the Erk branch is also important in this regard. Two transcription factors controlled by Ras-Erk appear to be key mediators of these effects: Pnt, a gene expression activator, and Aop, a repressor. It therefore appears likely that life expectancy can be regulated via both branches of the signal pathway.


Contact

Prof. Dr. Linda Partridge
Max Planck Institute for Biology of Ageing, Köln
Phone: +49 221 37970-602

Email: Christine.Lesch@age.mpg.de

Scientific and Personal Assistance:
Dr. Christine Lesch


Original publication
Cathy Slack, Nazif Alic, Andrea Foley, Melissa Cabecinha, Matthew P. Hoddinott, and Linda Partridge

The Ras-Erk-ETS signalling pathway is a drug target for longevity

Cell; 25 June, 2015

Prof. Dr. Linda Partridge | Max Planck Institute for Biology of Ageing, Köln
Further information:
http://www.mpg.de/9294150/trametinib-longevity

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>