Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers help unlock the secrets of gene regulatory networks

05.02.2009
A quartet of studies by researchers at the California Institute of Technology (Caltech) highlight a special feature on gene regulatory networks recently published in the Proceedings of the National Academy of Sciences (PNAS).

The collection of papers, "Gene Networks in Development and Evolution Special Feature, Sackler Colloquium," was coedited by Caltech's Eric H. Davidson, the Norman Chandler Professor of Cell Biology. His coeditor was Michael Levine, professor of genetics, genomics and development at the University of California, Berkeley.

"The control system that determines how development of an animal occurs in each species is encoded in the genome, and the physical location of the sequences where this code is resident is being revealed in a new area of systems biology--the study of gene regulatory networks," says Davidson. Gene regulatory networks are the complex networks of gene interactions that direct the development of any given species.

The papers in the collection focus on the gene regulatory networks of a variety of organisms, including fruit flies, soil-dwelling nematodes, sea urchins, lampreys, and mice.

"These networks lie at the heart of the regulatory apparatus, and they consist of genes that encode proteins that regulate other genes, and the DNA sequences which control when and where they are expressed," says Davidson, who authored a paper in the special feature about a gene regulatory network found in sea urchin embryos. He and Levine also coauthored a perspective in the same issue of the journal on the properties of gene regulatory networks.

In one paper, Ellen V. Rothenberg, one of the two Albert Billings Ruddock Professors of Biology at Caltech, examines, in mice, the intricate developmental pathway that causes blood stem cells to differentiate into T cells, a varied class of immune system cells that help the body fight off infection.

The paper, Rothenberg says, represents a "codification of everything we know about T cell development. We've found that getting the right balances of the various regulatory signals is absolutely crucial for the T cells to come out right. It gives one a sense of how subtle and sophisticated the regulation can be."

Another study in the special feature by Marianne Bronner-Fraser, the second Albert Billings Ruddock Professor of Biology, focuses on the gene regulatory network underlying neural crest formation in the lamprey, the most primitive living vertebrate. The neural crest is a group of embryonic cells that are pinched off during the formation of the neural tube--the precursor to the spinal cord--and then migrate throughout the developing body to form other nervous system structures.

The study "reveals order and linkages within the network at early stages," Bronner-Fraser says. "Because the neural crest cell type represents a vertebrate innovation, our work in lampreys shows that this network is ancient and tightly conserved to the base of vertebrates," she says.

The fourth of the Caltech papers, by Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute (HHMI), and his colleagues, looks at a postembryonic gene regulatory network in Caenorhabditis elegans, a soil-dwelling worm commonly studied by developmental biologists. The gene regulatory network studied by Sternberg and his colleagues controls the formation of the worm's vulva, which connects the uterus with the outside and allows the passage of sperm and eggs.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>