Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech researchers help unlock the secrets of gene regulatory networks

05.02.2009
A quartet of studies by researchers at the California Institute of Technology (Caltech) highlight a special feature on gene regulatory networks recently published in the Proceedings of the National Academy of Sciences (PNAS).

The collection of papers, "Gene Networks in Development and Evolution Special Feature, Sackler Colloquium," was coedited by Caltech's Eric H. Davidson, the Norman Chandler Professor of Cell Biology. His coeditor was Michael Levine, professor of genetics, genomics and development at the University of California, Berkeley.

"The control system that determines how development of an animal occurs in each species is encoded in the genome, and the physical location of the sequences where this code is resident is being revealed in a new area of systems biology--the study of gene regulatory networks," says Davidson. Gene regulatory networks are the complex networks of gene interactions that direct the development of any given species.

The papers in the collection focus on the gene regulatory networks of a variety of organisms, including fruit flies, soil-dwelling nematodes, sea urchins, lampreys, and mice.

"These networks lie at the heart of the regulatory apparatus, and they consist of genes that encode proteins that regulate other genes, and the DNA sequences which control when and where they are expressed," says Davidson, who authored a paper in the special feature about a gene regulatory network found in sea urchin embryos. He and Levine also coauthored a perspective in the same issue of the journal on the properties of gene regulatory networks.

In one paper, Ellen V. Rothenberg, one of the two Albert Billings Ruddock Professors of Biology at Caltech, examines, in mice, the intricate developmental pathway that causes blood stem cells to differentiate into T cells, a varied class of immune system cells that help the body fight off infection.

The paper, Rothenberg says, represents a "codification of everything we know about T cell development. We've found that getting the right balances of the various regulatory signals is absolutely crucial for the T cells to come out right. It gives one a sense of how subtle and sophisticated the regulation can be."

Another study in the special feature by Marianne Bronner-Fraser, the second Albert Billings Ruddock Professor of Biology, focuses on the gene regulatory network underlying neural crest formation in the lamprey, the most primitive living vertebrate. The neural crest is a group of embryonic cells that are pinched off during the formation of the neural tube--the precursor to the spinal cord--and then migrate throughout the developing body to form other nervous system structures.

The study "reveals order and linkages within the network at early stages," Bronner-Fraser says. "Because the neural crest cell type represents a vertebrate innovation, our work in lampreys shows that this network is ancient and tightly conserved to the base of vertebrates," she says.

The fourth of the Caltech papers, by Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute (HHMI), and his colleagues, looks at a postembryonic gene regulatory network in Caenorhabditis elegans, a soil-dwelling worm commonly studied by developmental biologists. The gene regulatory network studied by Sternberg and his colleagues controls the formation of the worm's vulva, which connects the uterus with the outside and allows the passage of sperm and eggs.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>