Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium waves in the brain alleviate depressive behavior in mice

22.03.2016

Researchers at the RIKEN Brain Science Institute in Japan have discovered that the benefits of stimulating the brain with direct current come from its effects on astrocytes -- not neurons -- in the mouse brain. Published in Nature Communications, the work shows that applying direct current to the head releases synchronized waves of calcium from astrocytes that can reduce depressive symptoms and lead to a general increase in neural plasticity -- the ability of neuronal connections to change when we try to learn or form memories.


(top) Ca2+ surges induced by tDCS in normal mice. (bottom). Surges are absent in mice with the IP3 receptor 2 knockout mice.

Credit: RIKEN

Transcranial direct current stimulation (tDCS) is a well-known and effective procedure that has been used for decades to clinically treat major depression. The procedure is non-invasive, lasts about 30 minutes, and involves targeting specific brain areas by applying weak electric current through the head. In addition to reducing symptoms of depression, it has even been shown to enhance learning and synaptic plasticity in both humans and animals.

"While we have known the clinical benefits of this kind of stimulation for quite some time," notes team leader Hajime Hirase, "our research is aimed at understanding the cellular mechanisms through which its effects are made possible."

Because calcium levels in astrocytes -- a type of non-neural glial cell in the brain -- have recently been shown to be important for transmitting signals that help neurons form connections with each other, Hirase and his team decided to examine brain activity during transcranial direct current stimulation using calcium imaging.

To accomplish this, they first made a transgenic mouse that expresses a fluorescent calcium-indicator protein in astrocytes and a subset of neurons in the brain. With this setup, they were able to image brain-wide calcium activity with a standard fluorescence microscope.

When they monitored calcium levels, they found that transcranial stimulation caused large amplitude surges of calcium. "Surprisingly, the calcium surges occurred very quickly after stimulation onset," explains lead author Hiromu Monai, "and appeared synchronized all over the cortex not only near the stimulated location."

The calcium surges were absent when the same experiment was performed on mice in which rising calcium levels in astrocytes were prevented, either through knocking out a key receptor or by pharmacologically blocking another one. This allowed the researchers to know that astrocytes, not neurons, were the source of the waves. This was confirmed when they expressed the fluorescent marker using two different recombinant adeno-associated viruses, allowing them to distinguish calcium in neurons from calcium in astrocytes.

Next, they examined the importance of the calcium surges using a mouse model for stress-induced depression. While transcranial stimulation can normally reduce depression-like behavior in these mice, it failed when they blocked the astrocytic calcium surges. "This suggests that the positive effects of transcranial direct current stimulation on depression lie in these wide-spread calcium surges," says Monai. "But, we also wanted to investigate their effects on neural plasticity in general."

To examine this role of astrocytic calcium surges, the team looked at changes in sensory responses after transcranial stimulation. They measured the responses to flashes of light and whisker perturbation, and found that they were more than 50% greater after stimulation -- an effect that lasted for 2 hours after stimulation was over. These plastic changes in neuronal responses disappeared when calcium surges in astrocytes were prevented, indicating their importance in helping to change the connectivity between neurons.

"That this mechanism is mediated by astrocytic activity is exciting and hints that astrocytes could be a major therapeutic target for neuropsychiatric diseases," notes Hirase. "Additionally, glial activation by transcranial direct current stimulation should be carefully examined in primates (including humans), and perhaps safety standards should to be re-evaluated from the standpoint of glia."

###

Reference:

Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai U, Hirase H. (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications doi:10.1038/ncomms11100

adam phillips | EurekAlert!

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>