Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs life: The nerve cells that make locusts 'gang up'

17.12.2014

A team of biologists has identified a set of nerve cells in desert locusts that bring about 'gang-like' gregarious behaviour when they are forced into a crowd.

Dr Swidbert Ott from the University of Leicester's Department of Biology, working with Dr Steve Rogers at the University of Sydney, Australia, has published a study that reveals how newly identified nerve cells in locusts produce the neurochemical serotonin to initiate changes in their behaviour and lifestyle.


Computer reconstruction of nerve cells in a desert locust that produce the neurochemical serotonin. The colors indicate each cell's response to the social stimuli that cause gregarious behavior. The green cells contain less serotonin after a life-time of crowding with other locusts. The blue cells contain more serotonin after a locust has seen and smelled other locusts for just one hour. The yellow cells increase their serotonin content within an hour of exposing a locust to any of the social stimuli that induce gregarious behavior.

Credit: University of Leicester

The findings demonstrate the importance of individual history for understanding how brain chemicals control behaviour, which may apply more broadly to humans also.

Locusts are normally shy, solitary animals that actively avoid the company of other locusts. But when they are forced into contact with other locusts, they undergo a radical change in behaviour - they enter a 'bolder' gregarious state where they are attracted to the company of other locusts. This is the critical first step towards the formation of the notorious locust swarms.

Dr Ott said: "Locusts only have a small number of nerve cells that can synthesise serotonin. Now we have found that of these, a very select few respond specifically when a locust is first forced to be with other locusts. Within an hour, they produce more serotonin.

"It is these few cells that we think are responsible for the transformation of a loner into a gang member. In the long run, however, many of the other serotonin-cells also change, albeit towards making less serotonin."

When a locust is first forced into contact with other locusts, a specific set of nerve cells that produce the neurochemical serotonin is responsible for reconfiguring its behaviour so that the previously solitary locust becomes a member of the gang, which is known as 'gregarious' behaviour.

An entirely different set of its serotonin-producing nerve cells is then affected by life in the group in the long run.

Dr Ott added: "The key to our success was to look in locusts that have just become gregarious and that had never met another locust until an hour earlier. If we had looked only in solitary locusts and in locusts that had a life-long history of living in crowds, we would have missed the nerve cells that are the key players in the transformation.

"There is an important lesson here for understanding the mechanisms that drive changes in social behaviour in general, both in locusts and in humans. We have shown how important it is to look at what happens when a new social behaviour is first set up, not just at the long-term outcome.

"Research in insects can give us deep insights into how brains work in general, including our own."

Studies have previously shown that the change from solitary to gregarious behaviour is caused by serotonin.

The new study, which was funded by the Leverhulme Trust, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Royal Society, has identified the individual serotonin-producing nerve cells that are responsible for the switch from solitary to gregarious behaviour.

The scientists used a fluorescent stain that reveals the serotonin-producing nerve cells under the microscope. This allowed them to measure the amount of serotonin in individual nerve cells -- the brighter a nerve cell lights up, the more serotonin it contains. The newly identified cells were much brighter in locusts that had just been forcedly crowded with other locusts. Moreover, the same cells were also brighter in locusts that had their hind legs tickled by the researchers for an hour -- which is sufficient to make the locusts behave gregariously.

Serotonin has important roles in the brains of all animals that include the regulation of moods and social interactions.

In humans, there are strong links between changes in serotonin and mental disorders such as depression and anxiety.

  • Study shows 'swarm' mentality in locusts is a result of specific nerve cells that produce the brain chemical serotonin

     

  • Serotonin in humans is known to affect mood and behaviour such as aggression and anxiety

     

  • Research in insects can give us deep insights into how brains work in general, including the human brain

An image of nerve cells in a desert locust available to download at: https://www.dropbox.com/sh/xqzj5dgg97txkpt/AAD6mE3544Z5z79i_dsDuMuUa?dl=0

The paper, 'Differential activation of serotonergic neurons during short- and long-term gregarization of desert locusts', published in the academic journal Proceedings of the Royal Society B: Biological Sciences, can be found here: http://rspb.royalsocietypublishing.org/content/282/1800/20142062 DOI: 10.1098/rspb.2014.2062

Dr Swidbert Ott | EurekAlert!

Further reports about: Bugs Serotonin animals desert gregarious insects nerve cells social behaviour

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>