Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs life: The nerve cells that make locusts 'gang up'

17.12.2014

A team of biologists has identified a set of nerve cells in desert locusts that bring about 'gang-like' gregarious behaviour when they are forced into a crowd.

Dr Swidbert Ott from the University of Leicester's Department of Biology, working with Dr Steve Rogers at the University of Sydney, Australia, has published a study that reveals how newly identified nerve cells in locusts produce the neurochemical serotonin to initiate changes in their behaviour and lifestyle.


Computer reconstruction of nerve cells in a desert locust that produce the neurochemical serotonin. The colors indicate each cell's response to the social stimuli that cause gregarious behavior. The green cells contain less serotonin after a life-time of crowding with other locusts. The blue cells contain more serotonin after a locust has seen and smelled other locusts for just one hour. The yellow cells increase their serotonin content within an hour of exposing a locust to any of the social stimuli that induce gregarious behavior.

Credit: University of Leicester

The findings demonstrate the importance of individual history for understanding how brain chemicals control behaviour, which may apply more broadly to humans also.

Locusts are normally shy, solitary animals that actively avoid the company of other locusts. But when they are forced into contact with other locusts, they undergo a radical change in behaviour - they enter a 'bolder' gregarious state where they are attracted to the company of other locusts. This is the critical first step towards the formation of the notorious locust swarms.

Dr Ott said: "Locusts only have a small number of nerve cells that can synthesise serotonin. Now we have found that of these, a very select few respond specifically when a locust is first forced to be with other locusts. Within an hour, they produce more serotonin.

"It is these few cells that we think are responsible for the transformation of a loner into a gang member. In the long run, however, many of the other serotonin-cells also change, albeit towards making less serotonin."

When a locust is first forced into contact with other locusts, a specific set of nerve cells that produce the neurochemical serotonin is responsible for reconfiguring its behaviour so that the previously solitary locust becomes a member of the gang, which is known as 'gregarious' behaviour.

An entirely different set of its serotonin-producing nerve cells is then affected by life in the group in the long run.

Dr Ott added: "The key to our success was to look in locusts that have just become gregarious and that had never met another locust until an hour earlier. If we had looked only in solitary locusts and in locusts that had a life-long history of living in crowds, we would have missed the nerve cells that are the key players in the transformation.

"There is an important lesson here for understanding the mechanisms that drive changes in social behaviour in general, both in locusts and in humans. We have shown how important it is to look at what happens when a new social behaviour is first set up, not just at the long-term outcome.

"Research in insects can give us deep insights into how brains work in general, including our own."

Studies have previously shown that the change from solitary to gregarious behaviour is caused by serotonin.

The new study, which was funded by the Leverhulme Trust, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Royal Society, has identified the individual serotonin-producing nerve cells that are responsible for the switch from solitary to gregarious behaviour.

The scientists used a fluorescent stain that reveals the serotonin-producing nerve cells under the microscope. This allowed them to measure the amount of serotonin in individual nerve cells -- the brighter a nerve cell lights up, the more serotonin it contains. The newly identified cells were much brighter in locusts that had just been forcedly crowded with other locusts. Moreover, the same cells were also brighter in locusts that had their hind legs tickled by the researchers for an hour -- which is sufficient to make the locusts behave gregariously.

Serotonin has important roles in the brains of all animals that include the regulation of moods and social interactions.

In humans, there are strong links between changes in serotonin and mental disorders such as depression and anxiety.

  • Study shows 'swarm' mentality in locusts is a result of specific nerve cells that produce the brain chemical serotonin

     

  • Serotonin in humans is known to affect mood and behaviour such as aggression and anxiety

     

  • Research in insects can give us deep insights into how brains work in general, including the human brain

An image of nerve cells in a desert locust available to download at: https://www.dropbox.com/sh/xqzj5dgg97txkpt/AAD6mE3544Z5z79i_dsDuMuUa?dl=0

The paper, 'Differential activation of serotonergic neurons during short- and long-term gregarization of desert locusts', published in the academic journal Proceedings of the Royal Society B: Biological Sciences, can be found here: http://rspb.royalsocietypublishing.org/content/282/1800/20142062 DOI: 10.1098/rspb.2014.2062

Dr Swidbert Ott | EurekAlert!

Further reports about: Bugs Serotonin animals desert gregarious insects nerve cells social behaviour

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>