Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubonic Bottleneck: UNC Scientists Overturn Dogma on the Plague

16.02.2015

The current outbreak of the plague in Madagascar shines a light on the need for new approaches to treat the ancient pathogen. A new UNC study unexpectedly unravels a long-held theory on how a fleabite leads to infection.

For decades, scientists have thought the bacteria that cause the bubonic plague hijack host cells at the site of a fleabite and are then taken to the lymph nodes, where the bacteria multiply and trigger severe disease. But UNC School of Medicine researchers discovered that this accepted theory is off base. The bacteria do not use host cells; they traffic to lymph nodes on their own and not in great numbers.


National Institute of Allergies and Infectious Diseases

Yersinia Pestis, the bacteria that cause the plague

In fact, most of the plague-causing bacteria – called Yersinia pestis – get trapped in a bottleneck either in the skin, while en route to the lymph node, or in the node itself. Only a few microbes break free to infect the lymph node and cause disease.

“Anytime you find something where the host is winning, you want to exploit it,” said Virginia Miller, PhD, professor of microbiology and immunology and senior author of the paper in PLoS Pathogens. “If we can understand how the host and the bacteria contribute to this bottleneck, then this could become something we’d target so we could either ramp up what’s causing the bottleneck or slow down the infection.”

The discovery offers much needed information about how virulent insect-borne diseases, such as plague, malaria, and dengue virus cause infection. The findings also present new routes for research on how bacterial strains cause disease despite the immune system’s best efforts.

The plague, which killed millions of people during the Middle Ages, is contracted by several people each year in the western United States. Outbreaks have occurred in the recent past in India and Africa, and one is unfolding right now in Madagascar. Standard antibiotics are effective against Y. pestis if taken early enough. But infection can go undetected for days, making diagnosis difficult and antibiotics less effective the longer the bacteria take root.

There are three kinds of plague all caused by Y. pestis: bubonic, which is contracted through fleabite; pneumonic, which is contracted by breathing in the bacteria; and septicemic, which is a severe infection of blood.

Miller’s team studies the pneumonic and bubonic versions. Three years ago, Rodrigo Gonzalez, PhD – a UNC graduate student at the time and now a postdoctoral fellow at Harvard – searched the scientific literature for data confirming the accepted notion that Y. pestis gets trafficked by human phagocytic cells from the fleabite site to the lymph nodes. Scientists readily accepted this idea because when Y. pestis microbes are added to phagocytic cells in culture, the cells do soak up the bacteria.

Phagocytes essentially eat harmful microbes, and because these cells traffic through the lymphatic system, scientists came to the logical conclusion that phagocytes take the Y. pestis to the lymph nodes.

But Gonzales and Miller knew that a fleabite does not penetrate all layers of skin like an injection does. The bites of fleas and mosquitos are intradermal; they occur within the layers of skin. Gonzales and Miller agreed that testing this long-held theory was a worthy project.

Gonzales spent months developing an accurate way to mimic the flea bite in the lab so that the proper amount of bacteria would get transferred into the skin of mice. Then Miller’s team created 10 special DNA sequences and added them to the chromosome of Y. pestis to generate 10 different strains. This did not affect virulence of the bacteria but allowed Miller’s team to tag the microbes so that the researchers could identify which bacteria traveled from the “bite site” to the lymph nodes.

“We found that only one or two of the 10 bacteria made it to the lymph node,” Miller said. “But they got there fast – within five or ten minutes after the bacteria were introduced. We know that if a bacterium is traveling in a host cell, it would not move that fast because host cells are slow; they kind of crawl through the lymphatic system instead of flowing through fluid like bacteria can.”

Miller’s team is currently conducting experiments to figure out how most of the bacteria are prevented from infecting the lymph node.

“We may have found a point of vulnerability,” Miller said. “Exploiting it could lead to new ways to defeat Yersinia pestis and other insect-borne pathogens.”

The National Institutes of Health and the Robert D. Watkins Fellowship from American Society for Microbiology funded this research.

Contact Information
Mark Derewicz
Science Communications Manager
mark.derewicz@unch.unc.edu

Mark Derewicz | newswise
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>