Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor

17.05.2016

Not every breast cancer tumor follows the same path to grow. Some tumors have the assistance of myeloid-derived suppressor cells (MDSCs), a diverse type of immune cell involved in the suppression of the body's response against tumors. How breast cancer cells recruit MDSCs is not completely understood, but in a paper released today in Nature Cell Biology, Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage MDSCs.

"There are alternative paths a tumor may take without the MDSCs, but those cancer cells that take the mTOR path of activity tend to have more MDSCs through the production of granulocyte-colony stimulating factor (G-CSF), which drives the accumulation of MDSCs," said corresponding author Dr. Xiang Zhang, a McNair Scholar and assistant professor of molecular and cellular biology at Baylor College of Medicine.


The mTOR pathway, an important pathway controlling cell growth and metabolism, is aberrantly activated in some breast tumors. This activation leads to increased expression of granulocytic colony formation factor (G-CSF, blue triangleEnglish ), which is then released into the circulation and stimulates the accumulation of myeloid-derived suppressor cells (MDSCs). MDSCs recruited to tumors directly enhance tumor initiation capacity. They also modulate the functions of other immune cells to dampen the anti-tumor immunity. RTK, receptor tyrosine kinase.

Credit: X.Zhang

Knowing how cancer cells and MDSCs interact with each other helps researchers understand the events that may lead to tumor growth and metastasis and identify potential therapeutic targets. For instance, "determining that a patient's tumor is using the mTOR pathway would indicate that the cancer cells are more likely to depend on MDSCs for progression," said Zhang, who also is with the Lester and Sue Smith Breast Center at Baylor.

"This information suggests that, in this case, available therapies for mTOR combined with therapies for MDSCs represent potential therapeutic strategies." Tumors that do not use the mTOR signaling pathway would not be expected to respond as well to the same therapies.

... more about:
»cancer cells »mTOR »mTOR signaling »suppressor

The discovery of Zhang and colleagues is much in line with the concept of personalized medicine. "People talk about the specific mutations one patient's tumor has that are not in another patient's tumor. The same type of tumors having different mutations may warrant different treatments; that is personalized medicine," explained Zhang.

"We are trying to come from a different angle. We are trying to enrich this concept by saying that not only tumor-intrinsic characteristics are different from patient to patient, but, related to that, there is also diversity in terms of the immune components. Different tumors may evolve via different characteristics of the tumor and the immune response."

MDCSs are just one type of aberrant immune cell associated with the tumor. "In addition, there are other immune cells associated with the tumor - monocytes, macrophages, different subsets of T cells - that can either attack or help the tumor. All those cells may vary from patient to patient, and we don't really understand that yet," said Zhang.

In addition, MDSCs also play a role in non-cancer situations. For instance, in chronic inflammation, these cells try to suppress the inflammation; in this case, they play a pro-health role. So, "simply eliminating all MDSCs to treat cancer may likely result in negative side effects, such as autoimmune disease. That's why it's necessary to further characterize the diversity, to find the specific subsets of MDSCs that are tumor specific," said Zhang.

###

Other contributors to this work include Thomas Welte from Baylor and the Diana Helis Henry Medical Research Foundation, New Orleans; Ik Sun Kim, Lin Tian, Xia Gao, Hai Wang, June Li, Xue B. Holdman, Jason I. Herschkowitz, Adam Pond, Sarah Kurley, Tuan Nguyen, Lan Liao, Lacey E. Dobrolecki, Qianxing Mo, Dean P. Edwards, Shixia Huang, Li Xin, Jianming Xu, Yi Li, Michael T. Lewis, Thomas F. Westbrook, and Jeffrey M. Rosen (co-corresponding author), all from Baylor; and Guorui Xie, Lan Pang and Tian Wang from the department of microbiology and immunology at The University of Texas Medical Branch, Galveston.

This work is supported by National Cancer Institute (CA151293, CA16303), Breast Cancer Research Foundation, US Department of Defense (DAMD W81XWH-13-1-0195), Susan G. Komen (CCR14298445), McNair Medical Institute, and Diana Helis Henry Medical Research Foundation.

Media Contact

Dana Benson
benson@bcm.edu
713-798-4710

 @bcmhouston

https://www.bcm.edu/news 

Dana Benson | EurekAlert!

Further reports about: cancer cells mTOR mTOR signaling suppressor

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>