Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor

17.05.2016

Not every breast cancer tumor follows the same path to grow. Some tumors have the assistance of myeloid-derived suppressor cells (MDSCs), a diverse type of immune cell involved in the suppression of the body's response against tumors. How breast cancer cells recruit MDSCs is not completely understood, but in a paper released today in Nature Cell Biology, Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage MDSCs.

"There are alternative paths a tumor may take without the MDSCs, but those cancer cells that take the mTOR path of activity tend to have more MDSCs through the production of granulocyte-colony stimulating factor (G-CSF), which drives the accumulation of MDSCs," said corresponding author Dr. Xiang Zhang, a McNair Scholar and assistant professor of molecular and cellular biology at Baylor College of Medicine.


The mTOR pathway, an important pathway controlling cell growth and metabolism, is aberrantly activated in some breast tumors. This activation leads to increased expression of granulocytic colony formation factor (G-CSF, blue triangleEnglish ), which is then released into the circulation and stimulates the accumulation of myeloid-derived suppressor cells (MDSCs). MDSCs recruited to tumors directly enhance tumor initiation capacity. They also modulate the functions of other immune cells to dampen the anti-tumor immunity. RTK, receptor tyrosine kinase.

Credit: X.Zhang

Knowing how cancer cells and MDSCs interact with each other helps researchers understand the events that may lead to tumor growth and metastasis and identify potential therapeutic targets. For instance, "determining that a patient's tumor is using the mTOR pathway would indicate that the cancer cells are more likely to depend on MDSCs for progression," said Zhang, who also is with the Lester and Sue Smith Breast Center at Baylor.

"This information suggests that, in this case, available therapies for mTOR combined with therapies for MDSCs represent potential therapeutic strategies." Tumors that do not use the mTOR signaling pathway would not be expected to respond as well to the same therapies.

... more about:
»cancer cells »mTOR »mTOR signaling »suppressor

The discovery of Zhang and colleagues is much in line with the concept of personalized medicine. "People talk about the specific mutations one patient's tumor has that are not in another patient's tumor. The same type of tumors having different mutations may warrant different treatments; that is personalized medicine," explained Zhang.

"We are trying to come from a different angle. We are trying to enrich this concept by saying that not only tumor-intrinsic characteristics are different from patient to patient, but, related to that, there is also diversity in terms of the immune components. Different tumors may evolve via different characteristics of the tumor and the immune response."

MDCSs are just one type of aberrant immune cell associated with the tumor. "In addition, there are other immune cells associated with the tumor - monocytes, macrophages, different subsets of T cells - that can either attack or help the tumor. All those cells may vary from patient to patient, and we don't really understand that yet," said Zhang.

In addition, MDSCs also play a role in non-cancer situations. For instance, in chronic inflammation, these cells try to suppress the inflammation; in this case, they play a pro-health role. So, "simply eliminating all MDSCs to treat cancer may likely result in negative side effects, such as autoimmune disease. That's why it's necessary to further characterize the diversity, to find the specific subsets of MDSCs that are tumor specific," said Zhang.

###

Other contributors to this work include Thomas Welte from Baylor and the Diana Helis Henry Medical Research Foundation, New Orleans; Ik Sun Kim, Lin Tian, Xia Gao, Hai Wang, June Li, Xue B. Holdman, Jason I. Herschkowitz, Adam Pond, Sarah Kurley, Tuan Nguyen, Lan Liao, Lacey E. Dobrolecki, Qianxing Mo, Dean P. Edwards, Shixia Huang, Li Xin, Jianming Xu, Yi Li, Michael T. Lewis, Thomas F. Westbrook, and Jeffrey M. Rosen (co-corresponding author), all from Baylor; and Guorui Xie, Lan Pang and Tian Wang from the department of microbiology and immunology at The University of Texas Medical Branch, Galveston.

This work is supported by National Cancer Institute (CA151293, CA16303), Breast Cancer Research Foundation, US Department of Defense (DAMD W81XWH-13-1-0195), Susan G. Komen (CCR14298445), McNair Medical Institute, and Diana Helis Henry Medical Research Foundation.

Media Contact

Dana Benson
benson@bcm.edu
713-798-4710

 @bcmhouston

https://www.bcm.edu/news 

Dana Benson | EurekAlert!

Further reports about: cancer cells mTOR mTOR signaling suppressor

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>