Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer progression – The devil is in the detail

27.04.2016

Researchers at Helmholtz Zentrum München describe how breast cancer cells challenged with a small-molecule inhibitor targeting specific invasive properties switch to an alternative mode-of-action, rendering them even more aggressive. The results may impair future therapeutic approaches in the TGF-beta pathway and are published in the journal ‘Oncotarget’.

As breast cancer develops, tumor cells begin to breach the tissue compartment that normally confines the mammary gland and actively invade and spread into the surrounding tissue.


Detail of breast cancer cells in 3D-culture, collectively invading into the surrounding extracellular matrix.

Source: Diana Dragoi / Helmholtz Zentrum München

The research team, led by Dr. Christina Scheel attempted to block this process by exposing cancer cells to a small-molecule inhibitor targeting the TGF-beta Receptor Type I (TGFBR1). TGFBR1 is a crucial relay-protein in a signaling cascade known to endow breast cancer cells with the ability to invade.

Indeed, by doing so the scientist of the Institute of stem cell research were able to prevent a master regulator of genes involved in this process from initiating a cellular program that results in invasive behaviour of cancer cells.

This master regulator, Twist1, has long been implicated in breast cancer progression, but constitutes a type of protein that is currently not amenable to therapeutic targeting. Therefore, the researchers aimed to inhibit other, targetable signaling pathways that Twist1 depends on in order to mediate invasiveness.

Surprising results reveal the adaptiveness of breast cancer cells

“Initially, using conventional in vitro tissue culture techniques, our results indicated that we were indeed successful, as many of the previously described effects of Twist1-activation were prevented by simultaneously blocking TGFBR1” says Diana Dragoi, PhD student at ISF and first author on the study. However, when the researchers transferred the breast cancer cells to a more physiological, 3D-environment, they discovered to their great surprise that Twist1 was able to render breast cancer cells invasive even while TGFBR1 signaling was blocked.

The breast cancer cells had simply switched to an alternative mode of invasion, spreading through the 3D-environment as cohesive strands of cells, instead of single cells. Moreover, these cells had significantly higher rates of proliferation, suggesting they were better equipped to launch secondary tumors after disseminating to distant sites. This latter process, termed metastasis, is the major course of morbidity for breast cancer patients: systemic dissemination and subsequent growth of breast cancer cells in vital organs such as the brain, bone marrow or liver eventually leads to their destruction.

“Taken together, our study suggests that the inhibition of TGFBR1 does not simply block the ability of master regulator Twist1 to induce invasiveness in breast cancer cells, but redirects the actions of Twist1 to generate breast cancer cells that may be even more aggressive” adds co-author Anja Krattenmacher (ISF). “These data highlight the importance of diligent preclinical tests that aim to approximate in vivo conditions as much as possible and to test many different parameters. This is especially important when aiming to interfere with such a complex, multi-step process as metastasis” concludes Dr. Scheel. In the complexity of breast cancer progression, the devil is in the detail.

Further Information

Background
About 70.000 Women are diagnosed with breast cancer every year in Germany alone. Despite significant progress in treatment, rapid adaptation in some aggressive subtypes of breast cancer causes therapeutic resistance and relapse. Therefore, elucidating how breast cancer cells adapt to therapeutic intervention is crucial for the development of effective treatment strategies.

Original Publication:
Dragoi D. et al. (2016). Twist1 induces distinct cell states depending on TGFBR1-activation, Oncotarget, DOI: 10.18632/oncotarget.8878 http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=a...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. https://www.helmholtz-muenchen.de/en/index.html

The Institute of Stem Cell Research (ISF) investigates the basic molecular and cellular mechanisms of stem cell maintenance and differentiation. From that, the ISF then develops approaches in order to replace defect cell types, either by activating resting stem cells or by re-programming other existing cell types to repair themselves. The aim of these approaches is to stimulate the regrowth of damaged, pathologically changed or destroyed tissue.https://www.helmholtz-muenchen.de/en/isf/index.html

Media Contact
Department of Communication, Helmholtz Center Munich – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel: +49-89-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München
Dr. Christina Scheel, Helmholtz Zentrum München – German Research Center for Environmental Health, Institute of Stem Cell Research, Independent Junior Group Mammary Stem Cells. Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Tel +49-89-3187-2012 - E-Mail: christina.scheel@helmholtz-muenchen.de

Weitere Informationen:

https://www.helmholtz-muenchen.de/en/news/latest-news/press-information-news/art... - link to the press release

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>