Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer progression – The devil is in the detail

27.04.2016

Researchers at Helmholtz Zentrum München describe how breast cancer cells challenged with a small-molecule inhibitor targeting specific invasive properties switch to an alternative mode-of-action, rendering them even more aggressive. The results may impair future therapeutic approaches in the TGF-beta pathway and are published in the journal ‘Oncotarget’.

As breast cancer develops, tumor cells begin to breach the tissue compartment that normally confines the mammary gland and actively invade and spread into the surrounding tissue.


Detail of breast cancer cells in 3D-culture, collectively invading into the surrounding extracellular matrix.

Source: Diana Dragoi / Helmholtz Zentrum München

The research team, led by Dr. Christina Scheel attempted to block this process by exposing cancer cells to a small-molecule inhibitor targeting the TGF-beta Receptor Type I (TGFBR1). TGFBR1 is a crucial relay-protein in a signaling cascade known to endow breast cancer cells with the ability to invade.

Indeed, by doing so the scientist of the Institute of stem cell research were able to prevent a master regulator of genes involved in this process from initiating a cellular program that results in invasive behaviour of cancer cells.

This master regulator, Twist1, has long been implicated in breast cancer progression, but constitutes a type of protein that is currently not amenable to therapeutic targeting. Therefore, the researchers aimed to inhibit other, targetable signaling pathways that Twist1 depends on in order to mediate invasiveness.

Surprising results reveal the adaptiveness of breast cancer cells

“Initially, using conventional in vitro tissue culture techniques, our results indicated that we were indeed successful, as many of the previously described effects of Twist1-activation were prevented by simultaneously blocking TGFBR1” says Diana Dragoi, PhD student at ISF and first author on the study. However, when the researchers transferred the breast cancer cells to a more physiological, 3D-environment, they discovered to their great surprise that Twist1 was able to render breast cancer cells invasive even while TGFBR1 signaling was blocked.

The breast cancer cells had simply switched to an alternative mode of invasion, spreading through the 3D-environment as cohesive strands of cells, instead of single cells. Moreover, these cells had significantly higher rates of proliferation, suggesting they were better equipped to launch secondary tumors after disseminating to distant sites. This latter process, termed metastasis, is the major course of morbidity for breast cancer patients: systemic dissemination and subsequent growth of breast cancer cells in vital organs such as the brain, bone marrow or liver eventually leads to their destruction.

“Taken together, our study suggests that the inhibition of TGFBR1 does not simply block the ability of master regulator Twist1 to induce invasiveness in breast cancer cells, but redirects the actions of Twist1 to generate breast cancer cells that may be even more aggressive” adds co-author Anja Krattenmacher (ISF). “These data highlight the importance of diligent preclinical tests that aim to approximate in vivo conditions as much as possible and to test many different parameters. This is especially important when aiming to interfere with such a complex, multi-step process as metastasis” concludes Dr. Scheel. In the complexity of breast cancer progression, the devil is in the detail.

Further Information

Background
About 70.000 Women are diagnosed with breast cancer every year in Germany alone. Despite significant progress in treatment, rapid adaptation in some aggressive subtypes of breast cancer causes therapeutic resistance and relapse. Therefore, elucidating how breast cancer cells adapt to therapeutic intervention is crucial for the development of effective treatment strategies.

Original Publication:
Dragoi D. et al. (2016). Twist1 induces distinct cell states depending on TGFBR1-activation, Oncotarget, DOI: 10.18632/oncotarget.8878 http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=a...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. https://www.helmholtz-muenchen.de/en/index.html

The Institute of Stem Cell Research (ISF) investigates the basic molecular and cellular mechanisms of stem cell maintenance and differentiation. From that, the ISF then develops approaches in order to replace defect cell types, either by activating resting stem cells or by re-programming other existing cell types to repair themselves. The aim of these approaches is to stimulate the regrowth of damaged, pathologically changed or destroyed tissue.https://www.helmholtz-muenchen.de/en/isf/index.html

Media Contact
Department of Communication, Helmholtz Center Munich – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel: +49-89-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München
Dr. Christina Scheel, Helmholtz Zentrum München – German Research Center for Environmental Health, Institute of Stem Cell Research, Independent Junior Group Mammary Stem Cells. Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Tel +49-89-3187-2012 - E-Mail: christina.scheel@helmholtz-muenchen.de

Weitere Informationen:

https://www.helmholtz-muenchen.de/en/news/latest-news/press-information-news/art... - link to the press release

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>