Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in tuberculosis research: genetic pathogen code is the key for optimum treatment

24.06.2015

Scientists from the Research Center Borstel, the German Center for Infection Research, the Oxford Biomedical Research Centre and the South African National Institute for Communicable Diseases have developed a new genetic method, with which they can not only predict which antibiotics result in resistance, but with which they can also say which compounds are effective against the respective tuberculosis (TB) pathogens. The results will be published on Wednesday, June 24 in the online edition of the international journal The Lancet Infectious Diseases.

Detection of TB pathogens and the precise determination of antibiotic resistance was, until now, only done with culture procedures. This method requires up to six weeks until a result is available. Valuable time, which frequently delays effective treatment.


The entire genome at a glance: Thomas Kohl from the Research Center Borstel preparing samples for Whole Genome Sequencing.

Photo/Copyright: German Center for Infection Research/scienceRELATIONS

The procedures using cultures are also relatively prone to error. They need to be very precise, however, in order to obtain reliable and comparable results, and such ideal lab conditions are also usually not available in countries with high tuberculosis rates, in particular. Even the molecular-diagnostic quick tests used over the last 20 years can only provide information on a limited number of mutations and the resistances which result from them.

"We wanted to go one step further and give therapeutic pointers on which combinations of antibiotics are suitable for treating a certain pathogen", summarized Professor Stefan Niemann, Head of the Molecular Mycobacteriology research group at the Research Center Borstel and member of the Cluster of Excellence Inflammation at Interfaces, to describe the research approach. "We are moving from 130 years of TB cultivation towards a new, digital era in microbiology."

To do so, the team investigated the genomes from around 3500 strains of TB, using the Whole Genome Sequencing method (WGS). The researchers concentrated on changes to the genome which they could connect to antibiotic resistance and sensitivity.

"We have established a kind of dictionary for mutations in the genomes of TB pathogens", explained Niemann. "If changes to the genetic code are found in a patient isolate, then certain medications are no longer effective and should therefore not be used for treatment. This is an enormous advance in progress, particularly in terms of treating multi-resistant pathogens!"

It will take some time until the method can be applied by physicians in everyday practise. However Dr Thomas Kohl, co-author of the publication, believes that the method has great potential: "In the long term, genome analysis is significantly easier and cheaper to carry out than developing cultures. Above all, with regard to the WHO EndTB strategy, which plans to successfully end tuberculosis by 2035, these new diagnostic approaches are very important."

Tuberculosis (TB) is the most frequent deadly contagious disease worldwide. Estimates think that around one third of the world's population is infected with the pathogen. For the majority of those infected, however, tuberculosis never breaks out. Each year 9 million people contract TB - and around 1.5 million die as a result of its consequences. The ever increasing antibiotic resistances of the pathogens are an immense problem. This considerably extends the duration of treatment and causes high costs.

Original publication:
Walker, TM, Kohl, TA, Omar, SV, Hedge, J, Elias, CDO, Bradley, P, Iqbal, Z, Feuerriegel, S, Niehaus, KE, Wilson, DJ, Clifton, DA, Kapatai, G, Ip, C, Bowden, R, Drobniewski, FA, Allix-Béguec, C, Gaudin, C, Parkhill, J, Diel, R, Supply, P, Crook, DW, Smith, EG, Walker, AS, Ismail, N, Niemann, S, Peto, TEA and Modernizing Medical Microbiology (MMM) Informatics Group (2015): Whole-genome sequencing for prediction of Mycobacterium
tuberculosis drug susceptibility and resistance: a retrospective cohort study. The Lancet Infectious Diseases, http://dx.doi.org/10.1016/S1473-3099(15)00062-6 (as from June 24, 01:00 CET)

Contact:
Professor Dr Stefan Niemann
Research Center Borstel / Cluster of Excellence Inflammation at Interface s
German Center for Infection Research
Tel.: +49 (0)4537/ 188-7620
E-mail: sniemann@fz-borstel.de

Press contact:
Dr Tebke Böschen
Tel: +49 (0)431 880-4682, e-mail: tboeschen@uv.uni-kiel.de
Website: http://www.inflammation-at-interfaces.de

Britta Weller
Tel: +49 (0)4537 188-2890, e-mail: bweller@fz-borstel.de
Website: http://www.fz-borstel.de

Weitere Informationen:

http://inflammation-at-interfaces.de/en/newsroom/current-issues/breakthrough-tub...

Dr. Tebke Böschen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>