Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breakthrough in generating embryonic cells that are critical for human health


UC Riverside-led study reports a fast, robust model for developing neural crest cells

Neural crest cells arise early in the development of vertebrates, migrate extensively through the embryo, and differentiate to give rise to a wide array of diverse derivatives. Their contributions include a large proportion of our peripheral nerves, the melanocytes that provide skin color and protection from damaging UV light, as well as many different cell types in our face, including muscle, bone, cartilage and tooth-forming cells.

The image shows induced human neural crest cells. Human embryonic stem cells display neural crest characteristic expression after only five days of culture under WNT induction. Transcription factors SOX10 and PAX7 are seen in green and red, respectively.

Credit: García-Castro lab, UC Riverside.

The proper functioning of these cells is critical for human development and health. When neural crest biology fails, various birth defects and illnesses - cleft lip/palate, Hirschsprung and Waardenburg syndromes, melanoma and neuroblastoma - result. A better study of these cells is crucial, therefore, to aid in clinical efforts to diagnose and treat such conditions.

But access to these embryonic cells in humans is very difficult. As an alternative, scientists turned to models based in embryonic stem cells.

While protocols to generate human neural crest cells from human embryonic stem cells have progressed since the first report 11 years ago, they still have considerable limitations for their use in basic and clinical research. This is because these protocols commonly use ingredients or components not well defined, such as blood serum which contains many unknown components of varying concentrations. Some protocols result in large clusters of cells, impairing the identification of specific molecules and their roles during neural crest cell formation. Furthermore, the fastest of these protocols takes 12 days (of very costly culture conditions) to convert human embryonic stem cells to neural crest cells. Oftentimes the protocols provide low yields, making the isolation of the desired neural crest cells a time-consuming and technically challenging process.

Work done by a research team led by an associate professor of biomedical sciences in the School of Medicine at the University of California, Riverside now addresses these problems by providing a robust, fast, simple and trackable method to generate neural crest cells. The proposed method can facilitate research in basic sciences and clinical applications alike.

"Our study provides a superb model to generate neural crest cells in just five days starting from human embryonic stem cells or induced pluripotent cells, using a simple and well-defined media with all ingredients known and accounted for," said Martín I. García-Castro, whose lab led the study published in the Feb. 1 issue of the journal Development. "Our cost-effective, efficient and fast protocol allows a better analysis of the relevant signals and molecules involved in the formation of these cells. Our results suggest that human neural crest cells can arise independently from - and prior to - the formation of mesoderm and neural ectoderm derivatives, both of which had been thought to be critical for neural crest formation."

The mesoderm is the middle layer of the embryo in early development. It lies between the endoderm and the ectoderm, with the latter being the outermost layer. García-Castro's previous work on birds already challenged the dogma suggesting that neural crest cells form without mesodermal or neural contribution. Unpublished results from his lab have also confirmed the same using rabbit embryos as a mammalian model.

With regard to identifying specific molecules and their roles during neural crest cell formation, García-Castro's new work demonstrates the critical role played by a molecule known as WNT and highlights contributions from protein families called FGFs and BMPs.

Briefly, WNT proteins are signaling molecules that regulate cell-to-cell interactions during development and adult tissue homeostasis. The FGF protein family controls a wide range of biological functions. BMPs induce the formation of bone and cartilage and form tissues throughout the body.

"Our work provides strong evidence of the critical and initiating role of WNT signals in neural crest cell formation, with later contributions by FGF and BMP pathways," he said.

García-Castro emphasized that the proper function of neural crest cells is essential for human development and health.

"The study of these cells is essential to improve clinical efforts to diagnose, manage, and perhaps prevent diseases and conditions linked to them, and our lab has already launched efforts towards facial clefts - lip and or palate - and melanoma, and we hope to make substantial progress in both areas thanks to this novel protocol," he said.


The study was supported by funding from the National Institute of Dental and Craniofacial Research of the National Institutes of Health as well as Connecticut Innovations, a funding source for companies in Connecticut.

García-Castro came to UC Riverside in November 2014. His coauthors on the research paper are Alan W. Leung (first author of the research paper, currently at Yale University, Conn.) and Barbara Murdoch (currently at Eastern Connecticut State University), both of whom are former members in his lab; and Ahmed F. Salem, Maneeshi S. Prasad, and Gustavo A. Gomez at UC Riverside.

The University of California, Riverside ( is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala


Iqbal Pittalwala | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>