Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking Through Insect Shells at a Molecular Level

03.02.2016

With their chitinous shells, insects seem almost invulnerable – but like Achilles’ heel in Greek mythology, their impressive armor can still be attacked. Researchers at the universities of Bonn and Leipzig studied fruit flies (Drosophila) and discovered the molecular processes that are able to break through this protective casing. The enzyme chitinase 2 and growth factor idgf6 are especially important in correctly forming the insects’ shells. These findings are relevant for fighting parasites, and will be published in the professional journal “Scientific Reports.”

The same things that work with fruit flies (Drosophila) – one of developmental biologists’ favorite animals to study – can generally also be applied to other insects. The deactivation of chitinase 2 and/or idgf6 genes results in a fragile shell that does not support adequate protection for larva of fruit flies and very likely other insects such as mosquitos.


Light microscopy image of a live Drosophila that was unable to produce enough growth factor idgf6. Results are defects in the respiratory organ and in the chitinous shell.

Photo: Dr. Matthias Behr

“Pathogens can then easily infiltrate the animals, and they usually die during the larval stage,” says Assistant Professor Dr. Matthias Behr, who transferred from the Life & Medical Sciences (LIMES) Institute at his alma mater in Bonn to the Sächsische Inkubator für die klinische Translation (SIKT) at the University of Leipzig. The project was financed with funding from Special Research Area 645 at the University of Bonn.

The objective: tailor-made inhibitors

... more about:
»Drosophila »chitinase »enzyme »fruit flies »insects

The current discovery offers completely new starting points for keeping agricultural parasites as well as dangerous disease-carrying insects in check. The enzyme chitinase 2 and growth factor idgf6 are essential for shell formation in nearly all insects, as well as in arthropods like crabs and spiders.

“However, there are minor species-related differences that could allow us to develop tailor-made inhibitors that will prevent proper development of the chitinous shell in certain species,” says first author Yanina-Yasmin Pesch from the LIMES Institute at the University of Bonn. Specially developed substances could be used to attack the chitinous covering of one arthropod species while leaving other species unharmed.

Dr. Behr names two examples of possible applications: the spotted-wing drosophila (Drosophila suzukii) that recently migrated to Germany, and the new Zika virus pathogen. The spotted-wing drosophila causes enormous damage for the agricultural industry because it attacks a large volume of ripening fruit. The Zika virus is transmitted to people through mosquito bites. This virus is suspected of causing birth defects in Brazil, among other places. The researchers hope their discovery will make it easier to fight these kinds of dangerous insects in the future.

Supposed degradation enzyme helps build up shells

The researchers from the universities of Bonn and Leipzig, as well as from the Max Planck Institute of Biophysical Chemistry in Göttingen, turned up one other surprising find: “Until now, scientists assumed that chitinase 2 was a degradation enzyme,” reports Pesch. “But surprisingly, it has now been found that the enzyme is essential in forming the chitinous shell.” When the protective casing is being created, chitinase shortens the chitin to the right length. The precisely tailored components are then combined with other materials to build the shell.

As the team of researchers already showed in a previous study, the “Obstructor-A” protein plays a key role here. Like a construction-site manager, it makes sure that various building materials are added to the protective shell in the right places. “Step by step, our research is revealing molecular details about the insects’ Achilles heel,” says Dr. Behr.

Publication: Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects, professional journal “Scientific Reports”

Media contact:

Assistant Professor Dr. Matthias Behr
Sächsischer Inkubator für die klinische Translation (SIKT)
University of Leipzig
Tel. ++49-341-9739584
Email: matthias.behr@uni-leipzig.de

M.Sc. Yanina-Yasmin Pesch
Life & Medical Sciences (LIMES) Institute
University Bonn
Tel. ++49-228-7362713
Email: ypesch@uni-bonn.de

Weitere Informationen:

http://www.nature.com/articles/srep18340 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Drosophila chitinase enzyme fruit flies insects

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>