Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking Through Insect Shells at a Molecular Level

03.02.2016

With their chitinous shells, insects seem almost invulnerable – but like Achilles’ heel in Greek mythology, their impressive armor can still be attacked. Researchers at the universities of Bonn and Leipzig studied fruit flies (Drosophila) and discovered the molecular processes that are able to break through this protective casing. The enzyme chitinase 2 and growth factor idgf6 are especially important in correctly forming the insects’ shells. These findings are relevant for fighting parasites, and will be published in the professional journal “Scientific Reports.”

The same things that work with fruit flies (Drosophila) – one of developmental biologists’ favorite animals to study – can generally also be applied to other insects. The deactivation of chitinase 2 and/or idgf6 genes results in a fragile shell that does not support adequate protection for larva of fruit flies and very likely other insects such as mosquitos.


Light microscopy image of a live Drosophila that was unable to produce enough growth factor idgf6. Results are defects in the respiratory organ and in the chitinous shell.

Photo: Dr. Matthias Behr

“Pathogens can then easily infiltrate the animals, and they usually die during the larval stage,” says Assistant Professor Dr. Matthias Behr, who transferred from the Life & Medical Sciences (LIMES) Institute at his alma mater in Bonn to the Sächsische Inkubator für die klinische Translation (SIKT) at the University of Leipzig. The project was financed with funding from Special Research Area 645 at the University of Bonn.

The objective: tailor-made inhibitors

... more about:
»Drosophila »chitinase »enzyme »fruit flies »insects

The current discovery offers completely new starting points for keeping agricultural parasites as well as dangerous disease-carrying insects in check. The enzyme chitinase 2 and growth factor idgf6 are essential for shell formation in nearly all insects, as well as in arthropods like crabs and spiders.

“However, there are minor species-related differences that could allow us to develop tailor-made inhibitors that will prevent proper development of the chitinous shell in certain species,” says first author Yanina-Yasmin Pesch from the LIMES Institute at the University of Bonn. Specially developed substances could be used to attack the chitinous covering of one arthropod species while leaving other species unharmed.

Dr. Behr names two examples of possible applications: the spotted-wing drosophila (Drosophila suzukii) that recently migrated to Germany, and the new Zika virus pathogen. The spotted-wing drosophila causes enormous damage for the agricultural industry because it attacks a large volume of ripening fruit. The Zika virus is transmitted to people through mosquito bites. This virus is suspected of causing birth defects in Brazil, among other places. The researchers hope their discovery will make it easier to fight these kinds of dangerous insects in the future.

Supposed degradation enzyme helps build up shells

The researchers from the universities of Bonn and Leipzig, as well as from the Max Planck Institute of Biophysical Chemistry in Göttingen, turned up one other surprising find: “Until now, scientists assumed that chitinase 2 was a degradation enzyme,” reports Pesch. “But surprisingly, it has now been found that the enzyme is essential in forming the chitinous shell.” When the protective casing is being created, chitinase shortens the chitin to the right length. The precisely tailored components are then combined with other materials to build the shell.

As the team of researchers already showed in a previous study, the “Obstructor-A” protein plays a key role here. Like a construction-site manager, it makes sure that various building materials are added to the protective shell in the right places. “Step by step, our research is revealing molecular details about the insects’ Achilles heel,” says Dr. Behr.

Publication: Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects, professional journal “Scientific Reports”

Media contact:

Assistant Professor Dr. Matthias Behr
Sächsischer Inkubator für die klinische Translation (SIKT)
University of Leipzig
Tel. ++49-341-9739584
Email: matthias.behr@uni-leipzig.de

M.Sc. Yanina-Yasmin Pesch
Life & Medical Sciences (LIMES) Institute
University Bonn
Tel. ++49-228-7362713
Email: ypesch@uni-bonn.de

Weitere Informationen:

http://www.nature.com/articles/srep18340 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Drosophila chitinase enzyme fruit flies insects

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>