Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking species barriers by “breeding” mice in a dish

20.03.2018

How species differ from each other is a key question in biology. But genetic mapping between species has been challenging because hybrid crosses are typically sterile. Combining latest stem cell and genomic techniques, MPI scientists at the Friedrich Miescher Laboratory, Tübingen, Germany have pioneered in vitro recombination, a technique to circumvent breeding and directly cause gene exchanges in cells. In this way they have mapped differences between mouse species within weeks and created mouse embryos carrying hybrid mosaic genomes, without breeding any live mice.

Since the Antiquity, scientists have long wondered what lies at the root of the difference between species. Today, biologists are able to decode genomes, track genes turning themselves on and off and even move and insert genes from one species to another.


Mouse embryonic stem cell colonies labelled with green fluorescent protein under standard growing conditions are typically uniform. In contrast, stem cell colonies grown under an in vitro recombinatio

Photo credit: Stefano Lazzarano

Yet, the answer to the question of which gene mutations make, say, a house mouse different from its wild relatives remains stubbornly elusive. This is because genetic analyses like those undertaken a century ago by Mendel required extensive breeding to mix up the genomes. But mixing across species like cross-breeding horses and donkeys tend to only give sterile offspring because encoded into the DNA of every species are many genetic barriers that prevent mixing through hybridization.

Using advanced stem cell techniques and clever genetic manipulations, researchers in the Chan Lab at the Tübingen Friedrich Miescher Laboratory have found a way to shuffle the genomes in hybrid mice. More surprising yet, they have done so entirely in a petri dish, without breeding any animals.

The Tübingen team achieved this breakthrough by carefully manipulating cell divisions in hybrid embryonic stem cells with a drug against a gene called Bloom Syndrome that is normally responsible for DNA unwinding. This in turn causes shuffling or mitotic recombinations between the divergent copies of mouse chromosomes from different species.

To show that this technique worked, the FML team investigated the difference between the laboratory Mus musculus musculus mouse and its sister species the Algerian mouse Mus spretus. One known difference is that Mus spretus are much faster at metabolizing a drug called tioguanine, likely due to their copy of a gene called Hprt. The Chan Lab decided to apply the new in vitro recombination technique to recover the gene responsible for metabolizing tioguanine.

After having shuffled the hybrid genomes, the Chan Lab used a cell sorter, in which millions of cells were individually measured using an intricate set of lasers, mirrors and detectors in thousandths of a second for their ability to survive by-products of tioguanine breakdown. Then by sequencing the DNA of these cells, the FML team found many more M. spretus copies of Hprt than the Mus domesticus variant among the tioguanine susceptible cells. This was resounding confirmation that in vitro recombination can be used to pin-point species differences.

Most impressively, this whole mapping experiment only took three weeks to perform, about as long as it takes for a single mouse to be born through breeding.

Using stem cells, advanced sequencing, and transgenic techniques, Chan and co-workers have shown the path forward for a completely new type of genetic studies. With this new in vitro recombination technique, gene differences in mammals like mice can be directly mapped in a safe, fast and reliable manner.

This technique also removes much breeding, thus helping to reduce the large number of experimental animals. Importantly, the same technique, applied to human cells, has the potential to improve medicine and treatments. By mixing the hybrid genomes, the Tübingen researchers offer new insights into genome function that can lead to advances in our fundamental understanding of species differences and disease.

Original Publication:
Lazzarano et al., Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells. Proc Nat Acad Sci, 2018. doi: 10.1073/pnas.1717474115

Contact:
Frank Chan
Phone: +49 7071 601 888
E-mail: frank.chan@tue.mpg.de

Sarah Hailer (PR Officer)
Phone: +49 7071 601- 444
E-mail: presse-eb@tuebingen.mpg.de

About us:
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 350 people and is one of four Max Planck Institutes located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology conducts basic research in the areas of biochemistry, molecular biology, genetics, cell- and evolutionary biology. It does not develop genetically modified crops. It is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

The Friedrich Miescher Laboratory (FML) was founded in 1969 by the Max Planck Society for the Advancement of Science. It provides outstanding young researchers the opportunity to establish a research group over a period of several years, to realize own ideas, and to start an independent career. Over 50 employees work currently at the FML within four research groups. The FML works closely together with the Max Planck Institutes for Developmental Biology and Biological Cybernetics, all situated at Max Planck Campus in Tübingen.

Sarah Hailer | Max-Planck-Institut für Entwicklungsbiologie
Further information:
http://www.fml.mpg.de

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>