Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain’s involvement in language processing depends on language characteristics and graphic symbols

26.03.2012
A study that examined the division of labor between the two sides of the brain during the reading of different languages found that brain processing involvement in the decoding of Arabic was different to the involvement in reading Hebrew and English, which makes learning Arabic more challenging.

Readers whose mother tongue is Arabic have more challenges reading in Arabic than native Hebrew or English speakers have reading their native languages, because the two halves of the brain divide the labor differently when the brain processes Arabic than when it processes Hebrew or English.

That is the result of a new study conducted by two University of Haifa researchers, Dr. Raphiq Ibrahim of the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities and the Learning Disabilities Department, and Prof. Zohar Eviatar of the Department of Psychology.

“It emerges that the contribution of the two halves of the brain to processing written language depends on the graphic and linguistic structure of these languages,” noted Dr. Ibrahim.

The two halves of the brain, called hemispheres, govern different types of activities: The right hemisphere specializes more in processing spatial tasks and the holistic (pattern) processing of messages, while the left hemisphere is responsible for processing verbal messages and local processing of messages.

In order to examine the interaction between the two hemispheres while reading Hebrew, English and Arabic, two experiments were conducted with subjects divided into three groups: those with Arabic as their mother tongue, those with English as their mother tongue and those with Hebrew as their mother tongue. Each group was tested in their native language.

In the first experiment, words and pseudowords (strings of letters that have no literal meaning) were presented on a screen, and the subjects were asked to figure out whether the stimulus was a real word; their response time, accuracy, and sensitivity were measured with every key pressed.

In the second experiment, the subjects were presented with various words on the right or the left side of the screen, which directs the information to be processed by the opposite hemisphere (i.e., when the proper or nonsense word is screened on the right side of the screen, it will be processed by the left side of the brain, and vice versa, a stage called “unilateral”). The various words were then shown on both sides of the screen, while under the target word there was a symbol that indicated that this was the word that they should treat, while the other stimulus appeared on the other side of the screen in order to distract the brain processing (this stage is called “bilateral”).

A comparison of both experiments establishes the degree of interaction between the two hemispheres during the brain’s processing of the language being checked.

The results show that for readers of Hebrew and English, both hemispheres of the brain are independently involved in the task of reading, such that neither side is dependent on the other. By contrast, for the Arabic readers, it emerged that the right hemisphere was not able to function independently in the reading assignments without using the resources of the left hemisphere.

According to Dr. Ibrahim, the significance of the findings is that despite the similarities between Arabic and Hebrew, when reading the former the right brain can’t function independently and the cognitive burden becomes especially heavy, making it more difficult to read the language, even for those whose mother tongue is Arabic.

“This proves that the Arabic language doesn’t behave like other languages when it comes to anything connected with decoding its graphic symbols,” said Dr. Ibrahim. “The study’s results show once again that on the word reading level the structural shape of Arabic orthography, that is, the graphic contours of the written language, activates the cognitive system differently. Thus, the question is again raised as to whether in the modern world those who speak certain languages have an advantage over those who speak other languages; and the role of pedagogy in improving reading skills among regular readers and those having difficulty is brought once again to the fore.”

To view the research paper, click on the link:
http://www.behavioralandbrainfunctions.com/content/8/1/3/abstract
For more information:
Rachel Feldman
Office: +972-4-8288722
Mobile: +972-54-3933092
Communications and Media Relations
University of Haifa
rfeldman@univ.haifa.ac.il

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>