Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain’s involvement in language processing depends on language characteristics and graphic symbols

26.03.2012
A study that examined the division of labor between the two sides of the brain during the reading of different languages found that brain processing involvement in the decoding of Arabic was different to the involvement in reading Hebrew and English, which makes learning Arabic more challenging.

Readers whose mother tongue is Arabic have more challenges reading in Arabic than native Hebrew or English speakers have reading their native languages, because the two halves of the brain divide the labor differently when the brain processes Arabic than when it processes Hebrew or English.

That is the result of a new study conducted by two University of Haifa researchers, Dr. Raphiq Ibrahim of the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities and the Learning Disabilities Department, and Prof. Zohar Eviatar of the Department of Psychology.

“It emerges that the contribution of the two halves of the brain to processing written language depends on the graphic and linguistic structure of these languages,” noted Dr. Ibrahim.

The two halves of the brain, called hemispheres, govern different types of activities: The right hemisphere specializes more in processing spatial tasks and the holistic (pattern) processing of messages, while the left hemisphere is responsible for processing verbal messages and local processing of messages.

In order to examine the interaction between the two hemispheres while reading Hebrew, English and Arabic, two experiments were conducted with subjects divided into three groups: those with Arabic as their mother tongue, those with English as their mother tongue and those with Hebrew as their mother tongue. Each group was tested in their native language.

In the first experiment, words and pseudowords (strings of letters that have no literal meaning) were presented on a screen, and the subjects were asked to figure out whether the stimulus was a real word; their response time, accuracy, and sensitivity were measured with every key pressed.

In the second experiment, the subjects were presented with various words on the right or the left side of the screen, which directs the information to be processed by the opposite hemisphere (i.e., when the proper or nonsense word is screened on the right side of the screen, it will be processed by the left side of the brain, and vice versa, a stage called “unilateral”). The various words were then shown on both sides of the screen, while under the target word there was a symbol that indicated that this was the word that they should treat, while the other stimulus appeared on the other side of the screen in order to distract the brain processing (this stage is called “bilateral”).

A comparison of both experiments establishes the degree of interaction between the two hemispheres during the brain’s processing of the language being checked.

The results show that for readers of Hebrew and English, both hemispheres of the brain are independently involved in the task of reading, such that neither side is dependent on the other. By contrast, for the Arabic readers, it emerged that the right hemisphere was not able to function independently in the reading assignments without using the resources of the left hemisphere.

According to Dr. Ibrahim, the significance of the findings is that despite the similarities between Arabic and Hebrew, when reading the former the right brain can’t function independently and the cognitive burden becomes especially heavy, making it more difficult to read the language, even for those whose mother tongue is Arabic.

“This proves that the Arabic language doesn’t behave like other languages when it comes to anything connected with decoding its graphic symbols,” said Dr. Ibrahim. “The study’s results show once again that on the word reading level the structural shape of Arabic orthography, that is, the graphic contours of the written language, activates the cognitive system differently. Thus, the question is again raised as to whether in the modern world those who speak certain languages have an advantage over those who speak other languages; and the role of pedagogy in improving reading skills among regular readers and those having difficulty is brought once again to the fore.”

To view the research paper, click on the link:
http://www.behavioralandbrainfunctions.com/content/8/1/3/abstract
For more information:
Rachel Feldman
Office: +972-4-8288722
Mobile: +972-54-3933092
Communications and Media Relations
University of Haifa
rfeldman@univ.haifa.ac.il

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>