Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botanists discover hundreds of species of fungi in deep coral ecosystems

12.07.2017

Researchers from the University of Hawai'i at Mānoa (UHM) Department of Botany have discovered hundreds of potentially new species of fungi in the deep coral ecosystem in the 'Au'au channel off Maui, Hawai'i. Mesophotic coral ecosystems (MCE) are generally found at depths between 130 - 500 feet and possess abundant plant (algal) life as well as new fish species. The mysteries of these reefs are only recently being revealed through technological advances in closed circuit rebreather diving. Previously overlooked--being too precarious for conventional SCUBA and too shallow to justify the cost of frequent submersible dives--mesophotic reefs continuously disclose breathtaking levels of biodiversity with each dive, yielding species and behavioral interactions new to science.

The UHM Hawai'i Undersea Research Laboratory (HURL) used the Pisces V submersible to collect native algae from the mesophotic reefs in the 'Au'au channel. Using the DNA sequencing facility at the UHM Hawai'i Institute of Marine Biology, Benjamin Wainwright, lead author of the study and UHM Botany postdoctoral researcher, and colleagues determined which species of fungus were associated with the native algae.


A rebreather diver with the submersible Pisces V working together at ~90 m depth to collect corals and macroalgae in the 'Au'au Channel.

Credit: Robert K Whitton

Fungi have been documented in almost all habitats on Earth, although marine fungi are less studied in comparison to their terrestrial counterparts. Scientists have found fungi in deep and shallow water corals, marine sponges and other invertebrates. The recently discovered fungi, however, were found living in association with algae.

"To the best of our knowledge, this is the first documented evidence confirming fungi in MCEs," said Wainwright.

Additionally, the research team discovered that 27% of the species detected in these deep dark environments are also found on terrestrial rainforest plants in Hawai'i.

"Finding such high overlap of fungal diversity on terrestrial plants was surprising. Mesophotic reefs are as dark as it gets where photosynthesis is still possible, so to find the same species of fungi on forest plants illustrates the remarkable ability of some fungi to tolerate, and thrive, in extremely different habitats," said Anthony Amend, senior author of the study and UHM associate professor of botany. "This ecological breadth is something that seemingly sets fungi apart from other organisms."

Plant-associated fungi provide many benefits to society. For example, Taxol, a chemotherapy medication used to treat cancers, is produced by a fungus found inside tree bark and leaves. Additionally, research has shown that fungi are useful in bioremediation efforts (for example, oil spill and industrial waste treatment) and capable of breaking down plastic waste.

It is currently not known whether the newly discovered fungal species are pathogens, helpful symbionts or unimportant to their algae hosts.

"Further, we don't currently know what metabolic capabilities they have that may prove to have medical or environmental applications," said Wainwright. "We know other undiscovered species are present in these ecosystems. Unfortunately, if we do not look now we may miss our opportunity to benefit from them and conserve them."

Deep reefs, like those in the 'Au'au channel, may act as a refuge as Earth's climate changes, providing habitat for any marine creatures that can take advantage of this deeper habitat. If this is indeed the case, understanding how this habitat functions and how the corals, algae and fungi interact with one another will be vital to preserving the refuge in the deep.

Media Contact

Marcie Grabowski
mworkman@hawaii.edu
808-956-3151

 @UHManoaNews

http://manoa.hawaii.edu 

Marcie Grabowski | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>