Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Bodyguard’ Protein Helps Protect Young RNAs

21.09.2015

RNA molecules transmit genetic information as blueprints for proteins and fulfil other essential tasks. For this purpose, they undergo a multi-step process during which they must be protected from premature degradation.

Scientists from the Max Planck Institute of Biochemistry (MPIB) in Martinsried have now identified a new mechanism that stabilizes specific RNA molecules and guides their processing. “The molecular complex associated with the protein NCBP3 we identified is primarily important in cellular stress situations such as virus infections,” says Andreas Pichlmair, group leader at the MPIB. “Our findings may open up new therapeutic approaches in the future.”


The newly identified protein NCBP3 (marked in green) at work in the nucleus of the cell (marked in blue). The dotted lines are showing the shape of the cells.

Picture: Andreas Pichlmair / Copyright: MPI of Biochemistry

RNA molecules with defects are rapidly degraded before they can harm the cell. To prevent nascent, still functionless RNA molecules from being destroyed already during RNA synthesis, they are provided with a molecular “cap” to protect them. The vulnerable end of the RNA molecule is thus masked, causing it to evade the cellular waste disposal mechanism.

A “cap-binding complex” (CBC) binds to this cap, thus stabilizing it. The CBC also fulfils other tasks: It regulates the processing of the RNA molecules, which includes the removal of unneeded regions. An important step for mRNAs, which transmit genetic information, is the export from the nucleus of the cell. mRNAs can only serve as blueprints for proteins if they are outside the nucleus, in the cytoplasm.

Until now, the prevailing scientific consensus was that the CBC consists exclusively of two “nuclear cap-binding proteins” (NCBP1 and 2), which bind in tandem to the cap-bearing end of the relevant RNA. Both NCBPs were considered essential for processes such as mRNA export from the cell nucleus. But as the current study shows, a loss of NCBP2 neither restricts this process nor is it harmful to the cell.

“We were able to identify an additional protein that occurs in conjunction with NCBP1, which we named NCBP3,” says Andreas Pichlmair. This protein is found in most higher organisms and is highly conserved in its structure, that is, it is scarcely varied – which suggests that its function is essential.

The conventional cap with NCBP2 is mainly associated with mRNAs and small RNAs. By contrast, the newly discovered complex only occurs with mRNAs that require intensive further processing. In addition, it is particularly important when the cell is stressed – for example, in virus infections. The researcher hopes this finding will open up new therapeutic approaches. It is also significant that the CBC associated with NCBP3 may possibly play a role in diseases that are due to defective RNA processing.

Further studies will now show whether and in what form NCBP3 is involved in anti-virus protection and in the development of diseases. It is already certain that the biogenesis of RNA molecules and thus one of the central processes of the cell is far more complex than previously assumed and is also controlled by external influences.

Original Publication
A. Gebhardt, M. Habjan, C. Benda, A. Meiler, D. Haas, M. Hein, A. Mann, M. Mann, B. Habermann and A. Pichlmair: NCBP3, a cap-binding protein involved in mRNA biogenesis. Nature Communications, September 18, 2015
DOI: 10.1038/ncomms9192

Contact
Dr. Andreas Pichlmair
Innate Immunity
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
e-mail: apichl@biochem.mpg.de
http://www.biochem.mpg.de/pichlmair

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone: +49 89 8578-2824
e-mail: pr@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/news - further press releases of the MPI for biochemistry
http://www.biochem.mpg.de/pichlmaier - website of the research group "Innate Immunity" (Andreas Pichlmair)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>