Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015

Researchers at the Mechanobiology Institute (MBI) at the National University of Singapore have discovered that the inherent 'handedness' of molecular structures directs the behaviour of individual cells and confers them the ability to sense the difference between left and right. This is a significant step forward in the understanding of cellular biology. This discovery was published in Nature Cell Biology on 23 March 2015.

Cellular decision making


The cytoskeleton (yellow) surrounds the nucleus (purple), displaying L-R asymmetry during cytoskeletal organization.

Credit: Mechanobiology Institute, National University of Singapore

Our bodies are made up of hundreds of different types of cells, each of which performs a unique and highly specialized task. Traditionally, the ability of cells to specialize in a given function was attributed to its genetic code. However, it is becoming increasingly clear that cells do not simply live by a set of inherited or pre-determined instructions. Instead, 'cellular decisions' are made dynamically, much like humans make decisions based on the information provided to us by our senses.

Although cells do not have the ability to see or hear, they do possess sensory structures that allow them to detect and measure various environmental stimuli. The application of mechanical force to the cell, for example, will be felt and the cell will respond accordingly. One of the most prominent cellular responses is to change shape and this property is reflected in the varying shapes of specialised cells.

Cellular senses have been attributed to various force-sensing cellular structures such as the cytoskeleton. This structure differs significantly from its namesake, the human skeleton, by being highly dynamic and playing roles in addition to the provision of structural support. For example, this network of molecular filaments or cables also generates internal forces that drive shape changes and even motility. As the cytoskeleton develops, individual protein filaments grow and shrink. They bundle together to form thicker fibres, and they move or contract. Each of these processes is collectively known as 'cytoskeleton dynamics'.

The question that has long intrigued scientists is how cytoskeleton dynamics can direct the behaviour of different cell types. To investigate this, MBI researchers Professor Alexander Bershadsky and Dr Tee Yee Han, in collaboration with researchers from the USA and Israel, observed the cytoskeleton in cells that were confined to a small circular area, using a technique known as "micro-patterning". This prevented the cells from changing shape and thus provided the researchers an unhindered view of cytoskeleton dynamics.

A surprising find

What was detected came as a surprise to the researchers. A pronounced left-right asymmetry was observed during cytoskeletal organisation. This asymmetry, which appeared as a whirlpool, with filaments moving anticlockwise inside the cell, was found to originate from the inherent twist that is present in individual actin filaments.

This helical twist occurs naturally as individual actin proteins join together to form the long actin cables that make up overall structure. This seemingly simple property has profound consequences as it suggests that the asymmetry of a single protein is translated to the asymmetric behaviour of a whole cell. This is akin to the twist of a screw or bolt directing the function or behaviour of the machine in which it is placed.

The ability of cells to distinguish between left and right is a phenomenon that continues to fascinate scientists. It is clear from this study that the asymmetry inherent in molecular structures can define the behaviour of whole cells, and this provides new insight into the ability of cells to 'make decisions' based on the mechanical properties of its environment. However, these findings also raise fascinating questions as to whether the same phenomenon can influence the formation and function of our organs, or even affect organism behaviour.

Indeed relatively simple biological systems, such as cells grown on defined patterns, display a pronounced asymmetry in their movement. At the other extreme, brain function and human cognition is dependent on the asymmetric behaviour of nerve cells. The possibility that the inherent asymmetry of molecular structures can define cell, tissue or even organism behaviour will undoubtedly drive further studies for years to come.

Media Contact

Amal Naquiah
amal@nus.edu.sg
65-651-65125

 @NUSingapore

http://www.nus.edu.sg/ 

Amal Naquiah | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>