Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biological field stations: Keeping a pulse on our planet


A Global infrastructure for research, education, & public engagement

A recent BioScience paper provides the first comprehensive inventory of the world's biological field stations. Its authors report 1,268 stations are operating in 120 countries -- from the tropics to the tundra, monitoring terrestrial, freshwater, and marine ecosystems. Long-term data collected by biological field stations are essential for underpinning environmental research, assessing environmental policies, and advancing conservation goals.

The LakeLab at Lake Stechlin in Brandenburg, Germany is a biological field station operated by the Leibniz-Institute of Freshwater Ecology and Inland Fisheries where scientists are studying the effects of climate change on lakes. It consists of a large central enclosure and 24 enclosures of 9 metres diameter as experimental units.

Credit: ©Peter Casper

Take the case of acid rain. Its discovery in North America was made possible by environmental data collected at a biological field station nestled in the White Mountains of New Hampshire. Hubbard Brook Experimental Forest is just one of the many biological field stations located around the globe that are keeping a pulse on the health of our planet.

Gene E. Likens, President Emeritus of the Cary Institute of Ecosystem Studies, is a coauthor on the paper, "Understanding complex environmental problems relies on biological field stations. Our acid rain work, which informed the 1990 Clean Air Act, was based on more than 26 years of long-term data. Biological field stations are a critical part of the global research infrastructure. Yet many are vulnerable to closure and need to do a better job of communicating their importance to decision makers, funders, and citizens."

Biological field stations are under continuous risk of closure due to financial insecurity, lack of public support, and weak governance. Some 38% are tied administratively to colleges and universities, with the rest overseen by museums, government organizations, and not-for-profits. The author's urge the creation of a sustainable framework for biological field stations that recognizes their regional, national, and global importance. They also highlight a need to integrate with larger initiatives, such as the Global Lakes Environmental Observatory Network and the Intergovernmental Platform on Biodiversity and Ecosystem Services.

Klement Tockner, Director of the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and lead author on the study explains, "Biological field stations are essential to managing the rapid environmental change taking place globally. We need a sustainable vision to ensure their success -- one that includes political support, increased public awareness, modernized cyber infrastructure, and improved data sharing. At the same time, we need to expand stations in areas that are underrepresented ecologically and geopolitically."

Most biological field stations are located in pristine or remote areas, like the Tundra Ecosystem Research Station situated in Canada's Southern Arctic Ecozone. Far fewer are in urbanized areas, like the Ecological Rhine Station situated on a former ship in Cologne, Germany. There is a vital need to record more environmental data in human-dominated systems, such as cities, and in sensitive areas such as deserts, savannas, mountainous regions, and offshore locations.

Undergraduate and graduate training is another benefit provided by biological field stations. These 'living laboratories' play a key role in educating the next generation of environmental scientists, and offer collaborative, hands-on research opportunities.

Likens concludes, "Given the myriad of problems facing our forests, freshwaters, and oceans - networked, sustainable biological field stations are essential. The information they collect is relevant to addressing most of today's pressing environmental problems -- from air and water pollution to the movement of invasive pests and pathogens. They deserve our strong support and protection."


The database on biological field stations is integrated in the Freshwater Information Platform:


Tydecks, L. et al. (2016): Biological Field Stations: A Global Infrastructure for Research, Education, and Public Engagement. BioScience, doi: 10.1093/biosci/biv174.

Gene E. Likens is president emeritus at the Cary Institute of Ecosystem Studies and a distinguished research professor at the University of Connecticut, Storrs; his research focuses on human impacts on aquatic and terrestrial ecosystems. Klement Tockner is director at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin and a professor of aquatic ecology at the Freie Universität Berlin, in Germany.

The Cary Institute of Ecosystem Studies is an independent, nonprofit environmental research organization located on 2,000 acres in New York's Hudson Valley. A world-premier center for ecosystem science, areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, our scientists have produced the unbiased research needed to inform effective management and policy decisions. Our science program is complemented by education and outreach initiatives.

Media Contact

Lori Quillen
845-677-7600 x121


Lori Quillen | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>