Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological field stations: Keeping a pulse on our planet

18.03.2016

A Global infrastructure for research, education, & public engagement

A recent BioScience paper provides the first comprehensive inventory of the world's biological field stations. Its authors report 1,268 stations are operating in 120 countries -- from the tropics to the tundra, monitoring terrestrial, freshwater, and marine ecosystems. Long-term data collected by biological field stations are essential for underpinning environmental research, assessing environmental policies, and advancing conservation goals.


The LakeLab at Lake Stechlin in Brandenburg, Germany is a biological field station operated by the Leibniz-Institute of Freshwater Ecology and Inland Fisheries where scientists are studying the effects of climate change on lakes. It consists of a large central enclosure and 24 enclosures of 9 metres diameter as experimental units.

Credit: ©Peter Casper

Take the case of acid rain. Its discovery in North America was made possible by environmental data collected at a biological field station nestled in the White Mountains of New Hampshire. Hubbard Brook Experimental Forest is just one of the many biological field stations located around the globe that are keeping a pulse on the health of our planet.

Gene E. Likens, President Emeritus of the Cary Institute of Ecosystem Studies, is a coauthor on the paper, "Understanding complex environmental problems relies on biological field stations. Our acid rain work, which informed the 1990 Clean Air Act, was based on more than 26 years of long-term data. Biological field stations are a critical part of the global research infrastructure. Yet many are vulnerable to closure and need to do a better job of communicating their importance to decision makers, funders, and citizens."

Biological field stations are under continuous risk of closure due to financial insecurity, lack of public support, and weak governance. Some 38% are tied administratively to colleges and universities, with the rest overseen by museums, government organizations, and not-for-profits. The author's urge the creation of a sustainable framework for biological field stations that recognizes their regional, national, and global importance. They also highlight a need to integrate with larger initiatives, such as the Global Lakes Environmental Observatory Network and the Intergovernmental Platform on Biodiversity and Ecosystem Services.

Klement Tockner, Director of the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and lead author on the study explains, "Biological field stations are essential to managing the rapid environmental change taking place globally. We need a sustainable vision to ensure their success -- one that includes political support, increased public awareness, modernized cyber infrastructure, and improved data sharing. At the same time, we need to expand stations in areas that are underrepresented ecologically and geopolitically."

Most biological field stations are located in pristine or remote areas, like the Tundra Ecosystem Research Station situated in Canada's Southern Arctic Ecozone. Far fewer are in urbanized areas, like the Ecological Rhine Station situated on a former ship in Cologne, Germany. There is a vital need to record more environmental data in human-dominated systems, such as cities, and in sensitive areas such as deserts, savannas, mountainous regions, and offshore locations.

Undergraduate and graduate training is another benefit provided by biological field stations. These 'living laboratories' play a key role in educating the next generation of environmental scientists, and offer collaborative, hands-on research opportunities.

Likens concludes, "Given the myriad of problems facing our forests, freshwaters, and oceans - networked, sustainable biological field stations are essential. The information they collect is relevant to addressing most of today's pressing environmental problems -- from air and water pollution to the movement of invasive pests and pathogens. They deserve our strong support and protection."

###

The database on biological field stations is integrated in the Freshwater Information Platform: http://atlas.freshwaterbiodiversity.eu/

Publication:

Tydecks, L. et al. (2016): Biological Field Stations: A Global Infrastructure for Research, Education, and Public Engagement. BioScience, doi: 10.1093/biosci/biv174.

Gene E. Likens is president emeritus at the Cary Institute of Ecosystem Studies and a distinguished research professor at the University of Connecticut, Storrs; his research focuses on human impacts on aquatic and terrestrial ecosystems. Klement Tockner is director at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin and a professor of aquatic ecology at the Freie Universität Berlin, in Germany.

The Cary Institute of Ecosystem Studies is an independent, nonprofit environmental research organization located on 2,000 acres in New York's Hudson Valley. A world-premier center for ecosystem science, areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, our scientists have produced the unbiased research needed to inform effective management and policy decisions. Our science program is complemented by education and outreach initiatives.

Media Contact

Lori Quillen
quillenl@caryinstitute.org
845-677-7600 x121

 @CaryInstitute

http://www.caryinstitute.org 

Lori Quillen | EurekAlert!

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>