Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological field stations: Keeping a pulse on our planet

18.03.2016

A Global infrastructure for research, education, & public engagement

A recent BioScience paper provides the first comprehensive inventory of the world's biological field stations. Its authors report 1,268 stations are operating in 120 countries -- from the tropics to the tundra, monitoring terrestrial, freshwater, and marine ecosystems. Long-term data collected by biological field stations are essential for underpinning environmental research, assessing environmental policies, and advancing conservation goals.


The LakeLab at Lake Stechlin in Brandenburg, Germany is a biological field station operated by the Leibniz-Institute of Freshwater Ecology and Inland Fisheries where scientists are studying the effects of climate change on lakes. It consists of a large central enclosure and 24 enclosures of 9 metres diameter as experimental units.

Credit: ©Peter Casper

Take the case of acid rain. Its discovery in North America was made possible by environmental data collected at a biological field station nestled in the White Mountains of New Hampshire. Hubbard Brook Experimental Forest is just one of the many biological field stations located around the globe that are keeping a pulse on the health of our planet.

Gene E. Likens, President Emeritus of the Cary Institute of Ecosystem Studies, is a coauthor on the paper, "Understanding complex environmental problems relies on biological field stations. Our acid rain work, which informed the 1990 Clean Air Act, was based on more than 26 years of long-term data. Biological field stations are a critical part of the global research infrastructure. Yet many are vulnerable to closure and need to do a better job of communicating their importance to decision makers, funders, and citizens."

Biological field stations are under continuous risk of closure due to financial insecurity, lack of public support, and weak governance. Some 38% are tied administratively to colleges and universities, with the rest overseen by museums, government organizations, and not-for-profits. The author's urge the creation of a sustainable framework for biological field stations that recognizes their regional, national, and global importance. They also highlight a need to integrate with larger initiatives, such as the Global Lakes Environmental Observatory Network and the Intergovernmental Platform on Biodiversity and Ecosystem Services.

Klement Tockner, Director of the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and lead author on the study explains, "Biological field stations are essential to managing the rapid environmental change taking place globally. We need a sustainable vision to ensure their success -- one that includes political support, increased public awareness, modernized cyber infrastructure, and improved data sharing. At the same time, we need to expand stations in areas that are underrepresented ecologically and geopolitically."

Most biological field stations are located in pristine or remote areas, like the Tundra Ecosystem Research Station situated in Canada's Southern Arctic Ecozone. Far fewer are in urbanized areas, like the Ecological Rhine Station situated on a former ship in Cologne, Germany. There is a vital need to record more environmental data in human-dominated systems, such as cities, and in sensitive areas such as deserts, savannas, mountainous regions, and offshore locations.

Undergraduate and graduate training is another benefit provided by biological field stations. These 'living laboratories' play a key role in educating the next generation of environmental scientists, and offer collaborative, hands-on research opportunities.

Likens concludes, "Given the myriad of problems facing our forests, freshwaters, and oceans - networked, sustainable biological field stations are essential. The information they collect is relevant to addressing most of today's pressing environmental problems -- from air and water pollution to the movement of invasive pests and pathogens. They deserve our strong support and protection."

###

The database on biological field stations is integrated in the Freshwater Information Platform: http://atlas.freshwaterbiodiversity.eu/

Publication:

Tydecks, L. et al. (2016): Biological Field Stations: A Global Infrastructure for Research, Education, and Public Engagement. BioScience, doi: 10.1093/biosci/biv174.

Gene E. Likens is president emeritus at the Cary Institute of Ecosystem Studies and a distinguished research professor at the University of Connecticut, Storrs; his research focuses on human impacts on aquatic and terrestrial ecosystems. Klement Tockner is director at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin and a professor of aquatic ecology at the Freie Universität Berlin, in Germany.

The Cary Institute of Ecosystem Studies is an independent, nonprofit environmental research organization located on 2,000 acres in New York's Hudson Valley. A world-premier center for ecosystem science, areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, our scientists have produced the unbiased research needed to inform effective management and policy decisions. Our science program is complemented by education and outreach initiatives.

Media Contact

Lori Quillen
quillenl@caryinstitute.org
845-677-7600 x121

 @CaryInstitute

http://www.caryinstitute.org 

Lori Quillen | EurekAlert!

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>