Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity protects fish from climate change

17.05.2016

Diverse fish communities more productive and resistant to changing temperatures

Fish provide protein to billions of people and are an especially critical food source in the developing world. Today marine biologists confirmed a key factor that could help them thrive through the coming decades: biodiversity. Communities with more fish species are more productive and more resilient to rising temperatures and temperature swings, according to a new study from the Smithsonian's Tennenbaum Marine Observatories Network and other international institutions.


These are reef fishes in the global center of fish diversity, Raja Ampat, West Papua.

Credit: Rick Stuart-Smith

The accelerating loss and rearrangement of species all over the globe have troubled scientists and the public for decades. But the question of whether biodiversity offers practical value--for humans and ecosystems--remained controversial. The new study, published May 16 in the Proceedings of the National Academy of Sciences, offers the most thorough proof yet that preserving marine biodiversity can benefit people as much as it benefits the oceans.

"Biodiversity is more than a pretty face," said lead author Emmett Duffy, director of the Tennenbaum Marine Observatories Network and senior scientist at the Smithsonian Environmental Research Center. "Preserving biodiversity is not just an aesthetic or spiritual issue--it's critical to the healthy functioning of ecosystems and the important services they provide to humans, like seafood."

The discovery came out of the Reef Life Survey, a comprehensive program that has conducted surveys of more than 3,000 fish species in 44 countries around the world. Many of the surveyors were volunteer citizen scientists, about a third of whom had no scientific background. Volunteer divers from 11 countries received training from the program's lead scientists at the University of Tasmania to collect data using standardized methods.

"This study is based on more than 4,000 underwater surveys," said co-author Rick Stuart-Smith of the University of Tasmania. "It was only possible with the enthusiastic contributions of highly trained volunteer divers in the Reef Life Survey program, which allowed us to achieve this comprehensive coverage of the world's reefs, from tropical to polar waters."

Armed with the most comprehensive global dataset on marine biodiversity involving standardized counts, the researchers tracked how 11 different environmental factors influenced total fish biomass on coral and rocky reefs around the world. Surprisingly, one of the strongest influences was biodiversity: The number of species (species richness) and the variety in how they use their environment (functional diversity) enhanced fish biomass. The boost in fish resources provided by biodiversity was second only to that of warm temperatures.

Temperature had a more complex relationship with fish biomass: Warmer ocean temperatures tended to boost fish biomass on average, while wider temperature fluctuations hindered it. But biodiversity made fish communities more resilient against changing climate. In communities with only a few species, fish biomass tended to increase with rising temperatures until seas warmed above 20 degrees Celsius (68 degrees Fahrenheit)--at which point biomass started to fall. But communities with many species remained stable at these higher temperatures.

The researchers found a similar buffering effect of diversity against temperature swings. While both high- and low-diversity communities were less productive under fluctuating temperatures, high-diversity communities suffered only half as much as low-diversity ones. The researchers suspect communities with more species are better equipped to handle temperature changes because they have more of their bases covered. When temperatures fluctuate, a community with numerous species has better odds that at least a few species can thrive in the new normal.

"This work is a critical step forward in linking insights from experiments in buckets and garden plots to the larger world," said co-author Jonathan Lefcheck of the Virginia Institute of Marine Science, referring to earlier biodiversity experiments done with plants and small animals in gardens or greenhouses. "It shows that experimental ecologists have in fact been on the right track for 20 years, and that biodiversity is paramount to how natural systems work."

"Results demonstrate that preserving local biodiversity is not only an ethical directive with aesthetical and genetic insurance value, but that it is an imperative for human life," said co-author Sergio Navarrete of the Pontifical Catholic University of Chile.

###

Video and images are available upon request. For multimedia, a copy of the paper or to speak to the authors, contact Kristen Minogue at 443-482-2325 or minoguek@si.edu.

Media Contact

Kristen Minogue
minoguek@si.edu
443-482-2325

http://www.si.edu 

Kristen Minogue | EurekAlert!

Further reports about: Biodiversity Reef biomass fish species marine biodiversity

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>