Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity: 11 new species come to light in Madagascar

26.05.2015

The fantastic palette of the panther chameleon underscores nature's richness

Madagascar is home to extraordinary biodiversity, but in the past few decades, the island's forests and associated biodiversity have been under greater attack than ever. Rapid deforestation is affecting the biotopes of hundreds of species, including the panther chameleon, a species with spectacular intra-specific colour variation. A new study by Michel Milinkovitch, professor of genetics, evolution, and biophysics at the University of Geneva (UNIGE), led in close collaboration with colleagues in Madagascar, reveals that this charismatic reptilian species, which is only found in Madagascar, is actually composed of eleven different species. The results of their research appear in the latest issue of the Molecular Ecology journal. They also discuss the urgent need to protect Madagascar's habitats.


Shown here is a panther chameleon.

Credit: © Michel Milinkovitch

In collaboration with professor Achille Raselimanana of the University of Antananarivo, researchers from the Department of Genetics and Evolution in the UNIGE Faculty of Sciences, led by Michel Milinkovitch, sought to find the genetic keys behind panther chameleon's incredible colour palette. Their analyses, performed on site in Madagascar, reveal the presence of 11 rather than a single species.

A Talkative Drop of Blood

It took two expeditions led from East to West for the scientists to collect a drop of blood from each of 324 individuals and document them through colour photographs. The DNA (mitochondrial and nuclear) of each of the specimens were sequenced and analysed in the laboratory according to the hypothesis that a chameleon's dominant colour might be related to the geographic zone where it is found. Most importantly, the genetic material indicated strong genetic structure among geographically-restricted lineages, revealing very low interbreeding among populations.

A Key for Turning Genetics into Color

The mathematical analyses of the 324 colour photographs demonstrated that subtle colour patterns could efficiently predict assignment of chameleon individuals to their corresponding genetic lineage, confirming that many of the geographical populations might need to be considered separated species. The scientists then simplified their analyses of the colour diversity into a classification key, which allows to link most chameleons to their corresponding species using only the naked eye. This case of hidden speciation confirms a major characteristic of Madagascar: it is amongst the most diverse places for life on Earth; a biodiversity hotspot.

Madagascar, Unique but Precarious Conservatory

Each of the new chameleon species requires individual management, given that they each constitute a different part of the biodiversity of the whole. The visual classification key devised by the researchers could assist local biologists and trade managers to avoid local population over-harvesting. The task of biodiversity management is daunting because of the widespread destruction of the forest habitat for agricultural practices as well as for firewood and charcoal production by populations with very low living standards. These human activities threaten the survival of 400 species of reptile, 300 species of amphibians, 300 species of birds, 15,000 species of plants and countless species of invertebrates. In addition, approximately 80 to 90% of all living species found in Madagascar are endemic, meaning they exist nowhere else on earth.

Given the charismatic nature of chameleons, Milinkovitch hopes that, beside a better understanding of the genetic basis of colour variation in chameleons, his collaborative study with his Malagasy colleagues will help his colleague, Professor Raselimanana, to continue his difficult enterprise: raising awareness for the staggering but fragile biodiversity hosted by Madagascar.

Media Contact

Michel Milinkovitch
Michel.Milinkovitch@unige.ch
41-223-793-338

 @UNIGEnews

http://www.unige.ch 

Michel Milinkovitch | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>