Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017

Researchers from Umeå University in Sweden describe a new method to study biochemical changes that occur in the pancreas during the development of diabetes. The method, recently published in Scientific Reports, is based on molecular spectroscopy and can be used to extract biochemical profiles (or "fingerprints") containing information about disease progression. The method could facilitate improved understanding of the mechanistic processes on molecular and cellular levels that are key to the development of diabetes.

The method uses vibrational microspectroscopic technology, including Fourier Transform Infrared (FT-IR) and Raman microspectroscopy. Different compounds have unique molecular vibrations that can be detected using infrared light or laser. These vibrations contain information about the sample's chemical composition, including molecular characteristics, prevalence and structure.


The digitally produced image illustrates how biochemical changes in the pancreas may be studied with the described method, without the need for labeling with external markers. The green structures correspond to an accumulation of beta-sheet proteins which indicate the development of type 2 diabetes.

Credit: Ulf Ahlgren, Umeå University

It is usually very difficult to interpret the extremely complex results and vast amount of data that this kind of assessment produces. By using advanced statistical methods, researchers can filter out "noise" such as, for example, natural variations. This results in a better overview and allows researchers to focus on the important factors.

"This method is well-suited for studying biological samples, since it does not damage the sample, does not require external markers such as antibody labels, and can be used in microscopy settings. The method can for example be used to determine which cell types are affected in a certain tissue, where and how," says András Gorzsás, researcher at the Department of Chemistry and co-author of the article.

The pancreas is a key organ for the development of diabetes, one of the greatest health issues in the world. According to the International Diabetes Federation, the number of individuals with diabetes is expected to rise from today's 415 million to more than 640 million by 2040. Despite the global prevalence of diabetes, researchers had limited methods to study biochemical changes directly in the pancreas.

Filtering out noise in complex data provides overview

In the Scientific Reports article, the researchers describe how a method for multivariate statistical analysis enables them to handle multiple variables simultaneously and thus analyze complex data from vibrational microspectroscopy of the pancreas. Using this method, which until now has been used primarily to study plant tissues, the researchers show that it is possible to discover previously unknown biochemical changes in the pancreas during disease development. In addition, previously known changes in the tissue may also be detected, but at even earlier stages of disease progression compared to what has been described by other techniques.

"By using this method we can create biochemical fingerprints of all changes occurring in the pancreas. The fingerprints inform us of what cell type we are looking at, which animal model it comes from and how far the disease has progressed. These fingerprints are so precise that even unknown samples can be classified if there is available reference material," says Ulf Ahlgren, Professor of Molecular Medicine and co-author of the article.

A non-destructive technique

The method can be used to analyze both mice and human pancreas from the outside of the organ, i.e. without the need to obtain tissue samples. Moreover, the researchers demonstrate in a transplantation experiment that pancreatic tissue (so called Islets of Langerhans) may be studied in vivo (i.e. in the living organism). In addition to studying mechanistic aspects of diabetes development and manifestation, the researchers hope that the method can be used to develop better prognostic and diagnostic tools for diabetes.

"I believe this possibility to study pancreatic tissue and especially the biochemistry of the insulin-producing Islets of Langerhans in the living organism is a very interesting opportunity for diabetes research. The method could prove useful for example to study the direct effects of anti-diabetic therapies on the biochemical composition and function of insulin-producing cells," says Ulf Ahlgren.

The researchers are also hopeful that their findings can lay the foundations for developing better tools for identifying cancer tissue to be surgically removed as part of pancreatic cancer treatment. The study was a collaborative effort with researchers at NTNU in Trondheim, Norway, and Karolinska institutet. The research was made possible by funding from the Swedish Research Council and the Kempe Foundations.

###

About the publication: Scientific Reports, article: Biochemical profiling of diabetes disease progression by multivariate vibrational microspectroscopy of the pancreas. Authors: Christoffer Nord, Maria Eriksson, Andrea Dicker, Anna Eriksson, Eivind Grong, Erwin Ilegems, Ronald Mårvik, Bård Kulseng, Per-Olof Berggren, András Gorzsás and Ulf Ahlgren. DOI: 10.1038/s41598-017-07015-z.

For more information, please contact:
András Gorzsás, Department of Chemistry, Umeå University
Phone: +46 (0)90 786 5918; +46 (0)73 151 3377
Email: andras.gorzsas@umu.se

Ulf Ahlgren, Umeå Centre for Molecular Medicine (UCMM)
Telefon: +46(0)90 785 4434; +46(0)70 220 9228
E-post: ulf.ahlgren@umu.se

Daniel Harju | EurekAlert!

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>