Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Billions of juvenile fish under the Arctic sea ice

12.10.2015

New under-ice net used in large-scale study on the prevalence of polar cod at the ice underside

Using a new net, marine biologists from the Alfred Wegener Institute have, for the first time, been able to catch polar cod directly beneath the Arctic sea ice with a trawl, allowing them to determine their large-scale distribution and origin.


Polar Cord

Photo: H. Flores / Alfred Wegener Institute

This information is of fundamental importance, as polar cod are a major source of food for seals, whales and seabirds in the Arctic. The study, which was recently published in the journal Polar Biology, shows that only juvenile fish are found under the ice, a habitat the researchers fear could disappear as a result of climate change.

Beluga whales, narwhals, ringed seals and numerous Arctic seabirds have one thing in common: their preferred food is polar cod, Boreogadus saida. As such, the fish is one of the Arctic Ocean’s most ecologically important animals. Despite its importance, there are still gaps in our understanding of it. For example, biologists have known for years that juvenile polar cod live under the sea ice.

However, to date it was not known just how many live there. The journal Polar Biology has now published important new findings by researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Universität Hamburg and the Dutch research institute IMARES.

“For the first time, we’ve been able to use a special net directly below the sea ice to catch a large number of polar cod, and therefore to estimate their prevalence over a large area. If you extrapolate these findings, there could be more than nine billion polar cod living under the ice in the Eastern Arctic. What’s more, we have also collected fundamental biological and physical data,” explains Carmen David, an AWI biologist and first author of the article.

The data was gathered in summer 2012, during an Arctic expedition on board the research icebreaker Polarstern. The researchers dragged a specially developed under-ice net next to the ship at 13 stations between Greenland, Svalbard and Russia.

The net, developed by AWI’s Dutch partner IMARES, is about the size of a car and designed so that its large frame quickly sinks beneath the sea ice every time it’s cast. Floats then push it towards the water’s surface so that it is directly under the ice floe. In addition, this trawl net, known as SUIT (Surface and Under Ice Trawl) is equipped with a camera and various other equipment for measuring ice thickness, temperature and salinity beneath the ice.

This allows the researchers to make catches that provide completely new insights into the polar cod’s lifecycle. “Up until our expedition, catches had only been made at specific points and observations made on individual polar cod caught beneath the ice by divers,” says David.

“Now we know: there are mainly one- or two-year-old juvenile fish living directly below the ice, and these feed on, among other things, amphipod crustaceans. Since some of the polar cod live in overhangs and cracks under the ice, it’s likely that we didn’t manage to catch all of them with our net – which means that the polar cod population beneath the ice may be even bigger than our figures suggest.”

To find out where the young polar cod come from, the researchers used satellite data and computer models, which can retrace the slow movement of the drifting sea ice. It has long been surmised that the young fish reach the Central Arctic from their spawning grounds under drifting ice. These spawning grounds are found in the coastal waters of the Laptev and Kara Seas in northern Siberia. In autumn new sea ice forms there, and is gradually pushed northwards into open waters by the wind. The juvenile fish are assumed to travel along under the ice.

“We analysed the satellite data to determine how far the ice in that particular area has travelled,” says AWI biologist and co-author of the study, Hauke Flores. “It took the ice between 240 and 340 days to travel from the coast to our measurement stations in the sea. These figures correspond with the age and size of the juvenile polar cod that we caught.” These results indicate that the fish caught in the west could have come from the Kara Sea, while those caught at the stations in the east are more likely from the Laptev Sea.

To discover how well fed the fish under the ice are, the scientists analysed their tissue in the laboratory. All the fish were in top condition, which suggests that there was enough food under the ice, making the sea ice a true nursery ground for polar cod.

Above all, the new insights into the juvenile fish under the ice are important because it’s still impossible to say how polar cod populations will change in the face of climate change. The largest and most important population lives in the Barents Sea, to the north of Norway. As climate change causes the Barents Sea to grow warmer, for some years now other fish species like capelin and Atlantic cod have moved further northward, creating new competition that could reduce the polar cod population. In fact, Norwegian researchers recently confirmed that, in a regularly monitored fjord on the island Spitsbergen, for the first time ever there were no polar cod found – but plenty of Atlantic cod.

If the polar cod population in the Barents Sea actually does shrink, the juvenile fish under the ice of the Eastern Arctic could become even more important – especially in order to make up for losses elsewhere. “We want to determine whether or not the young fish under the ice serve as a form of ‘polar cod reserve’, increasing the overall chances of survival for the coastal populations through genetic exchanges with populations in Siberia and elsewhere,” explains Flores.

After all, the estimated nine billion juvenile fish under the ice represent a substantial population. By way of comparison: the Barents Sea, the region with one of the world’s largest polar cod populations, is home to only twice as many one- to two-year-old fish of the species. Carmen David and Hauke Flores now hope to learn even more about the fate of the polar cod in the course of further expeditions.

Notes for Editors:
The study mentioned above was published in the journal Polar Biology under the following title:
Carmen David, Benjamin Lange, Thomas Krumpen, Fokje Schaafsma, Jan Andries van Franeker, Hauke Flores, 2015. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biology. DOI 10.1007/s00300-015-1774-0

Printable images can be found in the online version of this press release at: http://www.awi.de/en/about-us/service/press.html

Your academic contact partners at the Alfred-Wegener Institute are:
• Carmen David (Tel: +49 471 4831-1085; e-mail: Carmen.David@awi.de)
• Dr Hauke Flores (Tel: +49 471 4831-1444; e-mail: Hauke.Flores@awi.de)

Your contact partner at the Department of Communications and Media Relations is Sina Löschke (Tel: 0471 4831-2008; e-mail: medien@awi.de).

Ralf Röchert | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>