Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big data processing enables worldwide bacterial analysis

06.10.2016

Sequencing data from biological samples such as the skin, intestinal tissues, or soil and water are usually archived in public databases. This allows researchers from all over the globe to access them. However, this has led to the creation of extremely large quantities of data. To be able to explore all these data, new evaluation methods are necessary. Scientists at the Technical University of Munich (TUM) have developed a bioinformatics tool which allows to search all bacterial sequences in databases in just a few mouse clicks and find similarities or check whether a particular sequence exists.

Microbial communities are essential components of ecosystems around the world. They play a key role in key biological functions, ranging from carbon to nitrogen cycles in the environment to the regulation of immune and metabolic processes in animals and humans. That is why many scientists are currently investigatin microbial communities in great detail.


The Sequence Read Archive, a public database for deposition of sequences, currently stores over 100,000 gene sequence datasets which previously could not be evaluated in their whole. (Photo: Fotolia/ Dreaming Andy)

Sequencing for microbiological DNA analysis

The Sanger sequencing method developed in 1975 used to be the gold standard to decipher the DNA code for 30 years. Recently, next generation sequencing technologies, or NGS as they are called, have led to a new revolution: With minimal personnel requirements, current devices can, within 24 hours, generate as much data as a hundred runs of the very first DNA sequencing method.

... more about:
»DNA »DNA sequencing »data processing »rRNA »sequence

Today, the sequencing analysis of bacterial 16S rRNA genes is the most frequently used identification method for bacteria. The 16S rRNA genes are seen as ideal molecular markers for reconstructing the degree of relationship between organisms, as their sequence of nucleotides (the building blocks of DNA) has been relatively conserved throughout evolution and can be used to infer phylogenetic relationships between microorganisms. The acronym rRNA stands for ribosomal ribonucleic acid.

The Sequence Read Archive (SRA), a public database for deposition of sequences, currently stores over 100,000 such 16S rRNA gene sequence datasets. This is because the new technical procedures for DNA sequencing have caused the volume and complexity of genome research data over the past few years to grow exponentially. The SRA is home to datasets which previously could not be evaluated in their whole.

"Over all these years, a tremendous amount of sequences from human environments such as the intestine or skin, but also from soils or the ocean has been accumulated", explains Dr. Thomas Clavel from the Institute for Food and Health (ZIEL) at the TU Munich. "We have now created a tool which allows these databases to be searched in a relatively short amount of time in order to study the diversity and habitats of bacteria", says Clavel — "with this tool, a scientists can conduct a query within a few hours in order to find out in which type of samples the bacterium he is interested in can be found — for example a pathogen from a hospital. This was not possible before." The new platform is called Integrated Microbial Next Generation Sequencing (IMNGS) and can be accessed via the main website www.imngs.org.

A detailed description of how IMGS functions using the intestinal bacterium Acetatifactor muris has been published in the current online issue of "Scientific Reports". Registered users can carry out queries filtered by the origin of the bacterial data, or also download entire sequences.

Such bioinformatics approach may soon become indispensable in routine daily clinical diagnostics. However, one critical aspect is that many members of complex microbial communities remain to be described. "Improving the quality of sequence datasets by collecting new reference sequences is a great challenge ahead", says Clavel — "moreover, the quality of datasets is not yet good enough: the description of individual samples in databases is incomplete, and hence the comparison possibilities using IMNGS are currently still limited."

However, Clavel imagines that a collaboration with clinics could be a catalyst for progress, provided the database is filled more meticulously. "If we had very well-maintained databases, we could use innovative tools such as IMNGS to possibly help diagnosis of chronic illnesses more rapidly", says Clavel.

Publication:
Ilias Lagkouvardos, Divya Joseph, Martin Kapfhammer, Sabahattin Giritli, Matthias Horn, Dirk Haller and Thomas Clavel: IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies, Scientific Reports 2016. DOI: 10.1038/srep33721.
http://www.nature.com/articles/srep33721

Contact: 
Dr. habil. Thomas Clavel
Technical University of Munich
ZIEL – Institute for Food and Health
Core Facility NGS/Microbiome
Phone: +49 81 61 71 55 34
Mail: thomas.clavel@tum.de

Weitere Informationen:

http://go.tum.de/864790

Dr. Ulrich Marsch | Technische Universität München
Further information:
https://www.tum.de/en/about-tum/news/press-releases/short/article/33432/

Further reports about: DNA DNA sequencing data processing rRNA sequence

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>