Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better substances for treating the dengue virus

09.12.2014

Just like Ebola, dengue fever can be fatal. This disease is also caused by a virus for which there is currently no cure and no vaccine. Researchers from Mainz and Würzburg are now proposing potential new active substances.

In the quest for medication to treat the dengue virus, the scientific community is focusing on a particular enzyme of the pathogen, the protease known as NS2B/NS3. The reason for this is that inhibitors of similar proteases have been revealed to be very effective with other viruses. Protease inhibitors are already being used successfully in the treatment of HIV and Hepatitis patients.


The interactions of the protease inhibitor (yellow) with the enzyme were analyzed using computer-assisted methods. Image: Hongmei Wu

There are also several inhibitors for the dengue protease. However, at best, they stop only half of the viruses from multiplying, which is not enough for clinical applications. The Würzburg team led by virologist Jochen Bodem, in collaboration with scientists from the University of Mainz, has discovered far better inhibitors, which are now presented in the journal “Antimicrobial Agents and Chemotherapy”.

“We have developed seven good to very good inhibitors from the diaryl thioether class of molecules, and two of these are even really good,” says Bodem. When these two “stars” are used, only around three percent of the virus population in a cell culture survives even with very low concentrations of the active substance. From the point of view of science, this is a very good result, especially as the inhibitors, as desired, are highly specialist: they only target dengue viruses and have no impact whatsoever on very close relatives like the Hepatitis C virus.

The leading members of the team of researchers

The new active substances were developed by a team of virologists and pharmacists. From Mainz, Professor Tanja Schirmeister and, in particular, her colleague Hongmei Wu, were involved. Both conducted research at the University of Würzburg until a few years ago. Schirmeister’s team synthesized the inhibitors and then examined and further developed their interactions with the enzyme using computer-assisted methods.

On Jochen Bodem’s team, Stefanie Bock, who is now working towards a doctorate at the University of Münster, played a key role. Here the protease of the viruses was obtained and cleaned. The effect of the active substances on the dengue virus was later demonstrated in the safety laboratory. As a next step, the scientists will check whether the new active substances have negative effects on higher organisms and whether they inhibit viral replication there as well.

Dengue fever is spreading worldwide

Dengue fever originated in the tropics. However, for a few years now it has also been found in other warm regions of the world, such as the Mediterranean. Scientists are attributing this to climate change: the mosquitoes that transmit the virus to humans are able to expand their habitat thanks to increasing global warming.

The Robert Koch Institute reported on dengue fever in southern France and Croatia back in 2010. In Germany in 2013, there were a total of 879 recorded dengue patients – all travelers who had become infected in the southern hemisphere and in tropical countries. The World Health Organization estimates that the number of infections globally stands at 390 million a year. In 1970, infections occurred in just nine countries; these days, that figure has already risen to over 100.

Infection varies from asymptomatic to life-threatening

The virus is transmitted by the tiger mosquito and other mosquitoes. Usually the infection goes unnoticed since there are no signs of the disease in almost 90 percent of cases. In the remaining cases, an influenza-type illness develops, which may take a potentially fatal course, especially in children: in addition to muscle and bone pain accompanied by a high temperature for days, the patient then develops internal bleeding and other severe symptoms. Without intensive medical treatment, around half of these sufferers die.

To date, there is no vaccine and no way of fighting the dengue virus with specific drugs. It is therefore recommended that measures be taken to protect against mosquito bites in countries where there is a risk of infection; these include covering the skin with clothes as much as possible, sleeping under a mosquito net and applying mosquito-repellent creams.

“Novel Dengue virus NS2B/NS3 protease inhibitors”, Hongmei Wu, Stefanie Bock, Mariya Snitko, Thilo Berger, Thomas Weidner, Steven Holloway, Manuel Kanitz, Wibke E. Diederich, Holger Steuber, Christof Walter, Daniela Hofmann, Benedikt Weißbrich, Ralf Spannaus, Eliana G. Acosta, Ralf Bartenschlager, Bernd Engels, Tanja Schirmeister, and Jochen Bodem, Antimicrobial Agents and Chemotherapy, published online, December 8, 2014, doi:10.1128/AAC.03543-14

Contact

Dr. Jochen Bodem, Institute of Virology and Immunobiology at the University of Würzburg, T +49 (0)931 31-81509, jochen.bodem@vim.uni-wuerzburg.de

Prof. Dr. Tanja Schirmeister, Institute of Pharmacy and Biochemistry, University of Mainz, T +49 (0)6131 39-25742, schirmei@uni-mainz.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Chemotherapy Dengue Dengue fever Hepatitis NS3 dengue virus fever infections mosquito substances treating viruses

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>