Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better substances for treating the dengue virus

09.12.2014

Just like Ebola, dengue fever can be fatal. This disease is also caused by a virus for which there is currently no cure and no vaccine. Researchers from Mainz and Würzburg are now proposing potential new active substances.

In the quest for medication to treat the dengue virus, the scientific community is focusing on a particular enzyme of the pathogen, the protease known as NS2B/NS3. The reason for this is that inhibitors of similar proteases have been revealed to be very effective with other viruses. Protease inhibitors are already being used successfully in the treatment of HIV and Hepatitis patients.


The interactions of the protease inhibitor (yellow) with the enzyme were analyzed using computer-assisted methods. Image: Hongmei Wu

There are also several inhibitors for the dengue protease. However, at best, they stop only half of the viruses from multiplying, which is not enough for clinical applications. The Würzburg team led by virologist Jochen Bodem, in collaboration with scientists from the University of Mainz, has discovered far better inhibitors, which are now presented in the journal “Antimicrobial Agents and Chemotherapy”.

“We have developed seven good to very good inhibitors from the diaryl thioether class of molecules, and two of these are even really good,” says Bodem. When these two “stars” are used, only around three percent of the virus population in a cell culture survives even with very low concentrations of the active substance. From the point of view of science, this is a very good result, especially as the inhibitors, as desired, are highly specialist: they only target dengue viruses and have no impact whatsoever on very close relatives like the Hepatitis C virus.

The leading members of the team of researchers

The new active substances were developed by a team of virologists and pharmacists. From Mainz, Professor Tanja Schirmeister and, in particular, her colleague Hongmei Wu, were involved. Both conducted research at the University of Würzburg until a few years ago. Schirmeister’s team synthesized the inhibitors and then examined and further developed their interactions with the enzyme using computer-assisted methods.

On Jochen Bodem’s team, Stefanie Bock, who is now working towards a doctorate at the University of Münster, played a key role. Here the protease of the viruses was obtained and cleaned. The effect of the active substances on the dengue virus was later demonstrated in the safety laboratory. As a next step, the scientists will check whether the new active substances have negative effects on higher organisms and whether they inhibit viral replication there as well.

Dengue fever is spreading worldwide

Dengue fever originated in the tropics. However, for a few years now it has also been found in other warm regions of the world, such as the Mediterranean. Scientists are attributing this to climate change: the mosquitoes that transmit the virus to humans are able to expand their habitat thanks to increasing global warming.

The Robert Koch Institute reported on dengue fever in southern France and Croatia back in 2010. In Germany in 2013, there were a total of 879 recorded dengue patients – all travelers who had become infected in the southern hemisphere and in tropical countries. The World Health Organization estimates that the number of infections globally stands at 390 million a year. In 1970, infections occurred in just nine countries; these days, that figure has already risen to over 100.

Infection varies from asymptomatic to life-threatening

The virus is transmitted by the tiger mosquito and other mosquitoes. Usually the infection goes unnoticed since there are no signs of the disease in almost 90 percent of cases. In the remaining cases, an influenza-type illness develops, which may take a potentially fatal course, especially in children: in addition to muscle and bone pain accompanied by a high temperature for days, the patient then develops internal bleeding and other severe symptoms. Without intensive medical treatment, around half of these sufferers die.

To date, there is no vaccine and no way of fighting the dengue virus with specific drugs. It is therefore recommended that measures be taken to protect against mosquito bites in countries where there is a risk of infection; these include covering the skin with clothes as much as possible, sleeping under a mosquito net and applying mosquito-repellent creams.

“Novel Dengue virus NS2B/NS3 protease inhibitors”, Hongmei Wu, Stefanie Bock, Mariya Snitko, Thilo Berger, Thomas Weidner, Steven Holloway, Manuel Kanitz, Wibke E. Diederich, Holger Steuber, Christof Walter, Daniela Hofmann, Benedikt Weißbrich, Ralf Spannaus, Eliana G. Acosta, Ralf Bartenschlager, Bernd Engels, Tanja Schirmeister, and Jochen Bodem, Antimicrobial Agents and Chemotherapy, published online, December 8, 2014, doi:10.1128/AAC.03543-14

Contact

Dr. Jochen Bodem, Institute of Virology and Immunobiology at the University of Würzburg, T +49 (0)931 31-81509, jochen.bodem@vim.uni-wuerzburg.de

Prof. Dr. Tanja Schirmeister, Institute of Pharmacy and Biochemistry, University of Mainz, T +49 (0)6131 39-25742, schirmei@uni-mainz.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Chemotherapy Dengue Dengue fever Hepatitis NS3 dengue virus fever infections mosquito substances treating viruses

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>