Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria network for food: Bacteria connect to each other and exchange nutrients

23.02.2015

It is well-known that bacteria can support each others’ growth and exchange nutrients. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and their colleagues at the universities of Jena, Kaiserslautern, and Heidelberg, however, have now discovered a new way of how bacteria can achieve this nutritional exchange. They found that some bacteria can form nanotubular structures between single cells that enable a direct exchange of nutrients (Nature Communications, February 23, 2015).

Bacteria usually live in species-rich communities and frequently exchange nutrients and other metabolites. Until now, it was unclear whether microorganisms exchange metabolites exclusively by releasing them into the surrounding environment or whether they also use direct connections between cells for this purpose.


Electron micrograph of genetically modified Acinetobacter baylyi and Escherichia coli strains. The bacteria exchange amino acids via nanotubes.

Martin Westermann / Electron Microscopy Center, University Hospital, Friedrich Schiller University Jena, Germany

Scientists from the Research Group Experimental Ecology and Evolution at the Max Planck Institute for Chemical Ecology in Jena, Germany addressed this question using the soil bacterium Acinetobacter baylyi and the gut microbe Escherichia coli. By experimentally deleting bacterial genes from the genome of both species, the scientists generated mutants that were no longer able to produce certain amino acids, yet produced increased amounts of others.

In co-culture, both bacterial strains were able to cross-feed each other, thereby compensating the experimentally induced deficiencies (see also our press release "Division of Labor in the Test Tube − Bacteria grow faster if they feed each other", December 2, 2013 - http://www.ice.mpg.de/ext/1051.html?&L=0).

However, separating the two bacterial strains with a filter that allowed free passage of amino acids, yet prevented a direct contact between cells, abolished growth of both strains. “This experiment showed that a direct contact between cells was required for the nutrient exchange to occur,” explains Samay Pande, who recently obtained his PhD at the Max Planck Institute in Jena on this research project and now started a postdoc at the ETH Zürich.

Observing the co-culture under the electron microscope revealed structures that formed between bacterial strains, which functioned as nanotubes and enabled the exchange of nutrients between cells. Especially remarkable, however, was the fact that only the gut microbe Escherichia coli was capable of forming these structures and connecting to Acinetobacter baylyi or other E. coli cells.

“The major difference between both species is certainly that E. coli is able to actively move in liquid media, whereas A. baylyi is immotile. It may thus be possible that swimming is required for E. coli to find suitable partners and connect to them via nanotubes,” explains Christian Kost, head of the Research Group Experimental Ecology and Evolution, which is funded by the Volkswagen Foundation.

“A lack of amino acids triggered the formation of nanotubes. Deleting a gene, which is involved in the production of a certain amino acid, caused the resulting bacteria to connect to other bacterial cells and − in this way − compensate their nutritional deficiency. However, nanotubes did not form when the required amino acids were supplemented to the growth medium, indicating that the formation of these structures obviously depends on how ‘hungry’ a cell is,” the scientist summarizes the results.

Cells that specialize on particular biochemical processes and thereby divide their labor can be advantageous for bacterial communities: Resources can be used more economically, thus enhancing growth and efficiency.

Whether the formation of nanotubes exclusively serves the mutual exchange of nutrients or whether some bacterial species also parasitize other bacterial cells in this way will be subject to further investigation. Moreover, it remains unclear whether bacteria can actively choose the cells to which they attach. After all, such tubular connections also pose a potential risk, because the partner on the other side of the tube could also provide harmful substances.

“To me, the most exciting question that remains to be answered is whether bacteria are in fact unicellular and relatively simply structured organisms or whether we are actually looking at some other type of multicellularity, in which bacteria increase their complexity by attaching to each other and combining their biochemical abilities,” Christian Kost summarizes.

His research focuses mainly on the question why organisms cooperate with each other. Using bacterial communities as experimentally tractable model systems will help to explain why so many organisms have developed a cooperative lifestyle in the course of their evolution. [AO/CK]

Original Publication:
Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., Bischofs, I. B., Kost, C. (2015). Metabolic cross-feeding via intercellular nanotubes among bacteria. Nature Communications, DOI 10.1038/ncomms7238.
http://dx.doi.org/10.1038/ncomms7238

Further Information:
Dr. Christian Kost, Research Group Experimental Ecology and Evolution, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 (0)3641 57 1212, E-Mail ckost@ice.mpg.de

Contact and Image Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/633.html?&L=0 (VW Research Group Experimental Ecology and Evolution)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>