Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria navigate microparticle swarms to target: a biohybrid microrobot develops

26.06.2015

In the 1966 movie Fantastic Voyage, a submarine complete with crew is shrunk in size so that it can navigate through the human body, enabling the crew to perform surgery in the brain. This scenario remains in the realm of science fiction, and transporting a surgical team to a disease site will certainly remain fiction. Nevertheless, tiny submarines that could navigate through the body could be of great benefit: they could deliver drugs precisely to a target location, without causing side effects and stressing the whole organism.

If things go according to Metin Sitti, director of the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems in Stuttgart, with the help of biohybrid microrobots targeting therapy for example within stagnant fluids inside the human body such as inside the eye, spinal cord fluid, brain lobes, or urinary tract could in the foreseeable future come close to reality.


Swarm of biohybrid systems, composed of flagellated bacteria attached to microparti-cles, navigate through stagnant fluids such as inside the eye, the spinal cord, the brain, or the urinary tract.

Dr. Metin Sitti

The little helpers would accurately home-in on targets in the body, releasing a significant amount on drug precisely at the wished target location, without stressing the rest of the human body with side effects that this medication could potentially generate.

That this dream based on the Fantastic Voyage could come true in the near future is strengthened by recent scientific outcomes, published in Scientific Reports (Nature) this month. Researchers from the Carnegie Mellon University in Pittsburgh, USA and the Max Planck Institute for Intelligent Systems in Stuttgart have shown recently that flagellated bacteria attached to a large number of microparticles can carry the microsystem as a swarm to the desired target.

Maintaining an appropriate environment, like optimal pH level or non-polluted surrounding is essential for the survival of most microorganisms like bacteria, and they have developed sensing and propelling behaviors to move away from “un-wished or bad” environments. Flagellated bacteria such as E. coli or S. marcescens move self-propelled towards a desired pH level, which is called pH-taxis.

Scientist now take advantage out of these “natural” properties and link bacteria (bio-component) to artificial components like microparticles, to create swarms of biohybrid microrobots with a size of 1 to 5 micron (micron = 1/1000 mm), which can be manufac-tured fast at low costs.

“The bacteria serves as the sensor and actuator, while the microparticle is loaded with a specific cargo, like a drug that is intended to be delivered to a specific target location, “ explains Dr. Metin Sitti, director at the Max Planck Institute for Intelligent Systems in Stuttgart.

Given the pH-tactic response of a specific bacterial strain and knowing that cancerous tumors have a lower pH compared to that of periphery normal tissue, the use of a microrobotic system for targeted drug delivery application by pH-taxis seems to be attractive.

Until now, it has been unclear whether a specific number of bacteria (mostly in the range of 1 to 10), all stochastically linked to the same microparticle, would move as a group in the same direction, without releasing the particle. And even if a swarm consis-ting of several thousand copies of these biohybrid systems would manage to do so. A team of international researchers have now shown this kind of “swarm movement” of biohybrid microrobots for the first time, examined in water-like fluids, which serve as model fluids for non-floating liquor like naturally present in spinal cord fluid, brain lobes, eye, and urinary tract of the human body.

Since the bacteria strains used for the biohybrid systems are not pathogenic for human and the complete biobybrid microrobot will degrade afterwards, no burden has to be expected for the body.

One restriction of this bacteria-propelled microrobots may be the limited distance they can swim. External guidance will be needed to get the device most of the way to its destination fast. One obvious strategy for guiding a robot to the right spot fast is to add magnetic micro/nanoparticles to its synthetic body and to steer it externally with mag-nets.

Magnetic steering would take the microrobots fast to the target region coarsely, and turning off the magnetic field would allow cell-based steering using pH-taxis to reach to the target region finely. When arrived at the target location, the drug cargo needs to be released, either actively or passively. The passive way could be that the drug itself responds on pH and will be released automatically at the preferred pH value. The active release could be achieved by remote heating of metallic nanocomponents and hydrogel body of the robot, which would trigger the drug release.

Further steps might be to genetically modify bacteria in terms of their preferred pH value or to improve their motility. Within the human body, lots of helpful bacteria are resident, for example various strains of bacteria in the intestinal mucosa are necessary for the physiological digestion.

“In all of these experiments, safety aspects are of main importance for us”, states Dr. Metin Sitti. “The bacteria and the artificial component of the biohybrid microrobot are carefully selected and engineered, to avoid any toxic effect or other negative immune response when injected into any living system in the future.”

Weitere Informationen:

http://pi.is.mpg.de/

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>