Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria may help some corals survive bleaching events

03.06.2016

Researchers have shown for the first time that some corals surviving bleaching events obtain more nutrients from a particular group of bacteria, which may make the coral more heat-tolerant and enhance their recovery.

This is the key finding of a new study carried out by an international research team under the supervision of Prof. Dr. Christian Wild (Marine Ecology, University of Bremen, Germany).


One of the corals that bleached during the experiment, with the coral polyps expanded.

Dr. Ulisse Cardini

The study was recently published in the prestigious international journal “Environmental Microbiology”. Dr. Ulisse Cardini, who graduated last year at the University of Bremen and now works as researcher at the University of Vienna (Austria), is the first author of the study.

Coral bleaching and its linkage to ocean warming

Warm water corals are animals that grow optimally in water temperatures between ca. 23° and 30 °C. If temperatures exceed this comfort zone, then often coral bleaching occurs. In this process, corals loose most of their color as millions of microalgae that live within the corals leave their animal host.

As bleaching occurs, corals are not dead, but in a state of great weakness since they lack the algae that normally provide them with essential energy and nutrients. That is why bleaching often leads to mass mortality of corals, particularly if the heat stress is long-lasting and pronounced. Conversely, corals can re-uptake the microalgae and recover from bleaching when temperatures drop back to normal.

In recent years, ocean warming in combination with El-Nino phenomena led to a high frequency of extended coral bleaching events with ensuing mass mortality (e.g. 1998 in the Indian Ocean, 2002 in the Pacific Ocean, and 2005 in the Caribbean). At the moment, we are witnessing the worst mass coral bleaching on record affecting all world oceans.

The important role of bacteria in bleached corals

The study by Ulisse Cardini, Christian Wild, and others provided evidence supporting the hypothesis that a group of bacteria capable of nitrogen fixation may help their host corals to better survive through heat stress events. In fact, these microbes are able to provide essential nutrients that may be deficient in the coral when their symbiosis with microalgae is heat impaired.

During field and laboratory experiments at the Northern Red Sea (Aqaba, Jordan) the research team could demonstrate that nitrogen fixation increased by up to 300% in some of the corals exposed to heat stress. However, the outcome of the temperature stress was different in different corals.

In this context, the highly under-investigated interplay between the coral animals, the symbiotic algae, and the associated bacteria plays an important role and may select winners and losers in the world's coral reefs of the future.

Publication:
Cardini et al. (2016) Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching (in press at Environmental Microbiology).

Further information:

Prof. Dr. Christian Wild
University of Bremen
Faculty Biology / Chemistry
Marine Ecology
Phone. 0421 218 63367
E-mail: christian.wild@uni-bremen.de

Dr. Ulisse Cardini
University of Vienna
Department of Microbiology and Ecosystem Science
Division of Microbial Ecology
www.ulissecardini.info
Phone: +43 677 61633148
E-mail: cardini@microbial-ecology.net

Eberhard Scholz | Universität Bremen
Further information:
http://www.uni-bremen.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>