Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Baboons follow the majority


In a baboon group, any member can set the direction - not just the highest-ranking animal

Baboons live together in hierarchical groups. However, important decisions are not dictated by the highest-ranking group members but are instead made democratically. This was discovered by a team of scientists including Iain Couzin from the Max Planck Institute for Ornithology in Radolfzell.

No squabbling on holidays: baboons make democratic decisions about their travel routes.

© mhgallery/123RF

The researchers monitored the movements of a baboon community using GPS devices with to-the-second precision. This enabled them to observe how the animals make decisions and the direction in which the group moves.

The process is triggered by individuals who propose a direction. If opinions are divided, the undecided baboons follow the majority. This process is entirely democratic and takes place irrespective of which direction the dominant animals have chosen.

Olive baboons are incredibly agile. It is practically impossible to follow them for long periods of time and observe their decision-making. This explains why researchers were previously unable to discover how the animals deal with conflicts of interest and who makes the decisions in the hierarchically structured groups. “What’s fascinating about baboons is that they do absolutely everything together and therefore always have to reach a compromise,” explains Iain Couzin.

The researchers attached GPS transmitters to the animals and documented the movements of each individual baboon. A computer then used this data to calculate how the monkeys decide on a direction during their forays through the Kenyan savannah.

Some individuals propose a route by moving away from the group; the more of these initiators who purposefully chose the same direction, the greater the probability that the remainder of the group will follow them. The preference of the highest-ranking animal did not matter to the baboons. “The alpha animal did not therefore decide dictatorially, but the group instead makes democratic decisions,” says Couzin.

The situation where around the same number of animals wanted to head in different directions often arose. It then depended upon the angle between them. If this was less than 90° then the remaining animals chose the middle path. However, if the angle was greater, they selected one of the directions available based on the random principle.

Iain Couzin theoretically predicted this behaviour ten years ago but even he was a little surprised: “I am astonished that the predictions about an extremely complex community are so accurate. But it’s wonderful how everything has fitted together and that the observations have confirmed our calculations.”

The evaluation of the GPS data was extremely complicated and took several years. “It was difficult for us to understand when the baboons were trying to influence one another and when not,” Couzin points out. Couzin and his cooperation partners therefore flew to Kenya together to observe the animals in their natural habitat. “We would never have been able to develop our algorithm without these field studies, and without the algorithm we could never have understood how the decision-making process works,” Couzin sums up.

One part of the puzzle is nevertheless still missing - the influence of the terrain. The scientists are therefore now deploying a drone to produce a detailed, three-dimensional map from the air. Couzin explains: “We believe that information about the environment could provide us with very different insights into the animals’ social behaviour.”


Prof. Iain D. Couzin, Ph.D.
Max Planck Institute for Ornithology (Radolfzell), Radolfzell


Original publication
Ariana Strandburg-Peshkin, Damien R. Farine, Iain D. Couzin, Margaret C. Crofoot
Shared decision-making drives collective movement in wild baboons
Science; June 19, 2015

Prof. Iain D. Couzin, Ph.D. | Max Planck Institute for Ornithology (Radolfzell), Radolfzell

Further reports about: GPs Max Planck Institute Ornithology algorithm baboons decision-making movements

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>