Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baboons follow the majority

21.07.2015

In a baboon group, any member can set the direction - not just the highest-ranking animal

Baboons live together in hierarchical groups. However, important decisions are not dictated by the highest-ranking group members but are instead made democratically. This was discovered by a team of scientists including Iain Couzin from the Max Planck Institute for Ornithology in Radolfzell.


No squabbling on holidays: baboons make democratic decisions about their travel routes.

© mhgallery/123RF

The researchers monitored the movements of a baboon community using GPS devices with to-the-second precision. This enabled them to observe how the animals make decisions and the direction in which the group moves.

The process is triggered by individuals who propose a direction. If opinions are divided, the undecided baboons follow the majority. This process is entirely democratic and takes place irrespective of which direction the dominant animals have chosen.

Olive baboons are incredibly agile. It is practically impossible to follow them for long periods of time and observe their decision-making. This explains why researchers were previously unable to discover how the animals deal with conflicts of interest and who makes the decisions in the hierarchically structured groups. “What’s fascinating about baboons is that they do absolutely everything together and therefore always have to reach a compromise,” explains Iain Couzin.

The researchers attached GPS transmitters to the animals and documented the movements of each individual baboon. A computer then used this data to calculate how the monkeys decide on a direction during their forays through the Kenyan savannah.

Some individuals propose a route by moving away from the group; the more of these initiators who purposefully chose the same direction, the greater the probability that the remainder of the group will follow them. The preference of the highest-ranking animal did not matter to the baboons. “The alpha animal did not therefore decide dictatorially, but the group instead makes democratic decisions,” says Couzin.

The situation where around the same number of animals wanted to head in different directions often arose. It then depended upon the angle between them. If this was less than 90° then the remaining animals chose the middle path. However, if the angle was greater, they selected one of the directions available based on the random principle.

Iain Couzin theoretically predicted this behaviour ten years ago but even he was a little surprised: “I am astonished that the predictions about an extremely complex community are so accurate. But it’s wonderful how everything has fitted together and that the observations have confirmed our calculations.”

The evaluation of the GPS data was extremely complicated and took several years. “It was difficult for us to understand when the baboons were trying to influence one another and when not,” Couzin points out. Couzin and his cooperation partners therefore flew to Kenya together to observe the animals in their natural habitat. “We would never have been able to develop our algorithm without these field studies, and without the algorithm we could never have understood how the decision-making process works,” Couzin sums up.

One part of the puzzle is nevertheless still missing - the influence of the terrain. The scientists are therefore now deploying a drone to produce a detailed, three-dimensional map from the air. Couzin explains: “We believe that information about the environment could provide us with very different insights into the animals’ social behaviour.”


Contact

Prof. Iain D. Couzin, Ph.D.
Max Planck Institute for Ornithology (Radolfzell), Radolfzell

Email: icouzin@orn.mpg.de


Original publication
Ariana Strandburg-Peshkin, Damien R. Farine, Iain D. Couzin, Margaret C. Crofoot
Shared decision-making drives collective movement in wild baboons
Science; June 19, 2015

Prof. Iain D. Couzin, Ph.D. | Max Planck Institute for Ornithology (Radolfzell), Radolfzell

Further reports about: GPs Max Planck Institute Ornithology algorithm baboons decision-making movements

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>