Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baboons follow the majority

21.07.2015

In a baboon group, any member can set the direction - not just the highest-ranking animal

Baboons live together in hierarchical groups. However, important decisions are not dictated by the highest-ranking group members but are instead made democratically. This was discovered by a team of scientists including Iain Couzin from the Max Planck Institute for Ornithology in Radolfzell.


No squabbling on holidays: baboons make democratic decisions about their travel routes.

© mhgallery/123RF

The researchers monitored the movements of a baboon community using GPS devices with to-the-second precision. This enabled them to observe how the animals make decisions and the direction in which the group moves.

The process is triggered by individuals who propose a direction. If opinions are divided, the undecided baboons follow the majority. This process is entirely democratic and takes place irrespective of which direction the dominant animals have chosen.

Olive baboons are incredibly agile. It is practically impossible to follow them for long periods of time and observe their decision-making. This explains why researchers were previously unable to discover how the animals deal with conflicts of interest and who makes the decisions in the hierarchically structured groups. “What’s fascinating about baboons is that they do absolutely everything together and therefore always have to reach a compromise,” explains Iain Couzin.

The researchers attached GPS transmitters to the animals and documented the movements of each individual baboon. A computer then used this data to calculate how the monkeys decide on a direction during their forays through the Kenyan savannah.

Some individuals propose a route by moving away from the group; the more of these initiators who purposefully chose the same direction, the greater the probability that the remainder of the group will follow them. The preference of the highest-ranking animal did not matter to the baboons. “The alpha animal did not therefore decide dictatorially, but the group instead makes democratic decisions,” says Couzin.

The situation where around the same number of animals wanted to head in different directions often arose. It then depended upon the angle between them. If this was less than 90° then the remaining animals chose the middle path. However, if the angle was greater, they selected one of the directions available based on the random principle.

Iain Couzin theoretically predicted this behaviour ten years ago but even he was a little surprised: “I am astonished that the predictions about an extremely complex community are so accurate. But it’s wonderful how everything has fitted together and that the observations have confirmed our calculations.”

The evaluation of the GPS data was extremely complicated and took several years. “It was difficult for us to understand when the baboons were trying to influence one another and when not,” Couzin points out. Couzin and his cooperation partners therefore flew to Kenya together to observe the animals in their natural habitat. “We would never have been able to develop our algorithm without these field studies, and without the algorithm we could never have understood how the decision-making process works,” Couzin sums up.

One part of the puzzle is nevertheless still missing - the influence of the terrain. The scientists are therefore now deploying a drone to produce a detailed, three-dimensional map from the air. Couzin explains: “We believe that information about the environment could provide us with very different insights into the animals’ social behaviour.”


Contact

Prof. Iain D. Couzin, Ph.D.
Max Planck Institute for Ornithology (Radolfzell), Radolfzell

Email: icouzin@orn.mpg.de


Original publication
Ariana Strandburg-Peshkin, Damien R. Farine, Iain D. Couzin, Margaret C. Crofoot
Shared decision-making drives collective movement in wild baboons
Science; June 19, 2015

Prof. Iain D. Couzin, Ph.D. | Max Planck Institute for Ornithology (Radolfzell), Radolfzell

Further reports about: GPs Max Planck Institute Ornithology algorithm baboons decision-making movements

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>