Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian malaria also affects wild birds in Austria

10.02.2015

Avian malaria is not uncommon in Central Europe, as many endemic wild birds are infected with species of Plasmodium, which cause avian malaria. In most cases these blood parasites, transmitted by mosquitoes, do not produce any symptoms in endemic birds, as they have adapted to the parasites. A team of pathologists at the Vetmeduni Vienna recently showed for the first time that native birds, too, are susceptible to avian malaria. The data collected was published in the journal Parasitology Research.

In the summers of 2001 and 2004, blackbirds died on a massive scale in Austria. At that time, researchers at the Vetmeduni Vienna analysed more than 600 deceased birds and identified the Usutu virus as the cause of death. The birds had been collected in a regional effort by Austrians and were handed over to the scientists at the Vetmeduni Vienna.


Developmental stages of Plasmodium in a blood vessel of the brain, which have led to an almost complete vessel occlusion.

Photo: Herbert Weissenböck / Vetmeduni Vienna


Using their RNA-staining method, plasmodia become visible in black.

Photo: Herbert Weissenböck / Vetmeduni Vienna

More than ten years later, the researchers tapped once more into the extensive sample material to test the birds that died back then for avian malaria. Until then, only birds kept at Austrian zoos and originating from countries without mosquitoes had been known to be affected by avian malaria. These types of birds at the zoo typically live in Antarctica and the far north, so they have not had the evolutionary opportunity to adapt to avian malaria.

“An infection is life-threatening for penguins at a zoo, for example,” says lead author Herbert Weissenböck. “Native birds have adapted to the blood parasites over evolutionary time. Most of them carry the pathogen, but do not contract the disease. At least that’s what we thought.”

Avian malaria found in 15 percent of the examined birds

The researchers studied organs such as the liver, spleen, lungs and brain of 233 dead birds collected during the regional action programme. They found that some 15 percent of these specimens were infested with Plasmodium to such an extent that their organs were already damaged. Consequently, the researchers assume that the cause of these deaths was avian malaria.

Endemic populations of wild birds, however, are not at risk, believes Weissenböck. “Probably, only a small part of the population consistently dies of avian malaria. This has no dramatic effect on the overall population. But it is a completely new fact that native birds are susceptible at all.”

Three different Plasmodium species identified

Around 100 different Plasmodium species are known to exist. Weissenböck and primary author Nora Dinhopl identified three species in the examined birds: P. elongatum, P. vaughani and a type related to the South American P. lutzi. This new species still needs to be analysed and classified. Surprisingly a fourth subspecies quite frequent in Central Europe, P. relictum, was not present in the dead animals. “It is possible that the P. relictum found thus far does not cause as severe symptoms. We attribute the deaths to the first three subgroups”, Weissenböck reports.

Diagnostic method developed

Weissenböck and his team used a special RNA staining method that enabled them to examine the organs of dead birds. A special stain only binds to parasite RNA in tissue sections and therefore visualizes Plasmodium.

The pathologists want to further refine this method to be able to differentiate individual parasite subspecies. “Malaria is generally diagnosed in blood. Experts can see Plasmodium in red blood cells under the microscope. This was no option for the samples from our archives though. We would like to optimise our RNA staining process for blood samples as well. This would give us a sure-fire method for identifying different parasites in blood too”, Weissenböck emphasises.

Plasmodium decimates mosquitos too

The parasite is also apparently problematic for mosquitos. In a recently published study, Lithuanian partners to the University of Veterinary Medicine Vienna demonstrated that a high load of Plasmodia is also lethal to the insects. (http://link.springer.com/article/10.1007%2Fs00436-013-3733-4). “This is probably one way the mosquito population is naturally reduced every year”, says Weissenböck.

Service:
The article ” In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria”, by Nora Dinhopl, Nora Nedorost, Meike M. Mostegl, Christiane Weissenbacher-Lang and Herbert Weissenböck was published in the journal Parasitology Research. http://link.springer.com/article/10.1007/s00436-015-4328-z

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Herbert Weissenböck
Institute of Pathology and Forensic Veterinary Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2418
herbert.weissenboeck@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Plasmodium RNA Veterinary Veterinary Medicine Vetmeduni malaria organs parasite species wild birds

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>