Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ATTO inauguration ceremony in the Brazilian rain forest

19.08.2015

The Brazilian National Institute of Amazonian Research, the University of the State Amazonas and the Max Planck Society are opening a 325 meter high measurement tower in the Amazon rain forest

19.8.2015, Mainz and 2° 08' 45 S 13'' 59° 00' 20.12" W

One hundred fifty kilometers northeast of Manaus in the middle of the densest Brazilian rain forest stands the Amazonian Tall Tower Observatory, ATTO. After one year of construction, ATTO will be officially inaugurated on Saturday, August 22, 2015.


The 325 meter high ATTO tower in the Amazon rainforest.

Jürgen Kesselmeier/MPI for Chemistry


ATTO from below.

Stefan Wolff/MPI for Chemistry

The 325-meter-high measurement tower is a joint project between Germany and Brazil coordinated by the Max Planck Institute for Chemistry, the Max Planck Institute for Biogeochemistry, the Brazilian National Institute of Amazonian Research, INPA (Instituto Nacional de Pesquisas da Amazônia), and the University of the State of Amazonas, UEA (Universidade do Estado do Amazonas).

In addition to representatives of these research centers, the Brazilian Minister of Science, Technology and Innovation, Aldo Rebelo, the Governor of the State of Amazonas, José Melo, and representatives from the German embassy in Brazil will be traveling to the inauguration ceremony.

High above the treetops of the rain forest, modern measuring equipment will collect data about greenhouse gases, aerosol particles, cloud properties, boundary-layer processes, and the transport of air masses every day.

"With ATTO we are achieving a milestone in the research of the Earth system. All the data that we are generating with this new measuring tower is being incorporated into models to predict climate development," explains Ferdi Schüth, Vice President of the Max Planck Society, with a view to the inauguration. As a result, emphasizes Schüth, the research arising from ATTO measurements will help policymakers in the future to further develop environment policy regulations and global climate targets.

"We designed the ATTO project as a world reference laboratory for interactions between tropical rainforests with the atmosphere. The results will provide a major advance in the representation of tropical rainforests in meteorological and Earth system models to generate much more accurate weather forecasts and scenarios of future climate", explained the INPA's scientist Antonio Manzi, the Brazilian coordinator of the ATTO project.

"In addition, Brazil-side partners, especially those in Amazonia, have emphasized that the greatest legacy of the ATTO project for the Brazilian community should be the expertise - both knowledge transfer and training - that can be transferred through the joint work between Brazilian and foreign scientists and students", commented Rodrigo Souza, professor at UEA.

Far away from human influences

"We chose the location in the Brazilian rain forest as it is largely situated away from human influences and therefore guarantees relatively unperturbed data," explains Meinrat O. Andreae, Director of the Biogeochemistry Department at the Max Planck Institute for Chemistry, the institution that is responsible for coordinating the German contribution to the joint project. ”Furthermore, ATTO will allow scientists to carry out their measurements in higher layers of the atmosphere and more continuously than before, so that more reliable statements about the development of our atmosphere are to be expected,” continues Andreae.

From the top of the measurement tower researchers can also trace the changes in air masses triggered by crossing large areas of forest. By analyzing these interactions they want to gain knowledge about the importance of the rain forest for the atmosphere's chemistry and physics.

The scientists on site are still busy installing the measurement equipment on the tower but the first data will soon be collected and analyzed. The scientists' specific aim is firstly to better understand the sources and sinks of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. “We also do not yet adequately understand the role that the rain forest plays in the formation of aerosol particles and therefore in cloud formation. A whole range of secrets is waiting to be discovered using our new measurement tower," says Jürgen Kesselmeier, Project Coordinator at the Max Planck Society, summarizing the many hopes placed on ATTO.

Investment shared by Brazil and Germany

Luiz R. França, the Director of The Brazilian National Institute of Amazonian Research, INPA, points out: “This fascinating scientific joint venture is a clear illustration of how a giant task that benefits the entire planet and humankind, can be developed when two great countries, located in different and far away continents, work together in symphony. Our knowledge about the Amazonian region and the earth will not be the same when this magnificent and impressive enterprise is in full operation”.

The costs of roughly 8.4 million € for the construction of ATTO and the first five years of operation are being shared by Germany and Brazil. In Germany the project is financed by the Federal Ministry of Education and Research (BMBF) and in Brazil by the Federal Ministry of Science, Technology and Innovation and the Government of Amazonas.

Earth System Research at the Max Planck Society

At the Max Planck Society research into the Earth system is a key focus, in the form of the collaborative research of the Max Planck Institutes for Chemistry, Meteorology, and Biogeochemistry. This last institute also operates the tall tower ZOTTO in the Siberian taiga since 2006, among others around the world. SB/JE

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/atto-inauguration-ceremony-in-...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>