Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Atomic Design by Water


Scientists at the Max-Planck-Institut für Eisenforschung show how geometric structures at surfaces can be formed with atomic precision by water

A central element in such diverse technological problems as corrosion protection, battery materials or hydrogen production via electrolysis or fuel cells is the contact between two conducting elements – the electrolyte and the solid electrode at which a voltage is applied.

Water shapes the surface which is completely smooth in vacuum. Geometric structures, as the triangle on the left appear under the influence of water. Grey represent zinc, red oxygen and blue hydrogen

Suhyun Yoo, Max-Planck-Institut für Eisenforschung GmbH

Despite its importance for a multitude of key technologies hardly anything is known about the atomistic structure of the interface between the electrode and the electrolyte. In particular the atomic structure of the solid electrode has a decisive impact on the chemical reactions taking place at the interface.

The ability to selectively modify the structure of the surface at the scale of individual atoms would open completely new possibilities target and influence central chemical reactions.

Scientist from the Computational Materials Design department of the Max-Planck-Institut für Eisenforschung have come a great deal closer to achieving this goal. Within the framework of the Excellence-cluster RESOLV, a joint research initiative of seven research institutions in the Ruhr area, an unexpected phenomenon was found with the help of highly accurate quantum mechanical methods and powerful supercomputers.

Previous studies of metallic surfaces repeatedly show that the structure of the surface hardly changes in contact with a liquid electrolyte. The researchers were therefore very surprised when they brought a semi-conducting surface into contact with an electrolyte.

“We were completely surprised to see the formation of structures, which are unstable in the absence of water and are also not observed”, says Dr. Mira Todorova, head of the Electrochemistry and Corrosion group. The department head Prof. Neugebauer is equally enthusiastic:

“Our simulation methods allowed us not only to find a completely new and unexpected phenomenon, but also to identify the underlying mechanisms. This opens up totally new possibilities to shape and design surfaces with atomic precision.”

These studies not only offer new insights into future-oriented technologies, but also provide a new perception of a question intensely discussed in geology: The cause of the enhanced crack formation in minerals when they are exposed to a humid environment.

The work was published in the journal Physical Review Letters.

Original publication:
S. Yoo, M. Todorova and J. Neugebauer
Selective solvent-induced stabilization of polar oxide surfaces in an electrochemical environment
Physical Review Letters 120, 066101 (2018)
DOI: 10.1103/PhysRevLett.120.066101
(Editors suggestion)

Authors of the press release: M. Todorova, J. Neugebauer

Weitere Informationen:

Yasmin Ahmed Salem M.A. | Max-Planck-Institut für Eisenforschung GmbH

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>