Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arylboronates made easy

20.08.2015

Abandoning expensive and toxic materials in chemical synthesis: This is the goal pursued by scientists at the University of Würzburg. In the magazine "Angewandte Chemie", they describe a new way to achieve this goal, a surprise included.

Arylboronates are important base materials for the industrial fabrication of countless products, including pharmaceutical drugs, chemicals for agriculture or liquid crystals for displays. The synthesis of arylboronates to date has required metalliferous catalysts such as palladium, iridium or nickel.


Using zinc as catalyst, circular molecules can be fitted with two boronate groups at the same time.

(Picture: Todd Marder)

These materials have a number of drawbacks: The metals are either expensive, toxic or both. Nickel, for example, can trigger allergies. When used in pharmaceutical drug production, the nickel has to be removed again after the reaction in a complex process.

Progress with zinc catalysts

The Würzburg chemists Shubhankar Kumar Bose and Todd Marder now present an entirely new catalytic process that enables arylboronates to be produced at lower costs and with less environmental impact. Their success is based on the use of zinc catalysts. "Zinc is cheap, non-toxic and abundant on our planet," Marder names some of the metal's benefits.

As the team reports in "Angewandte Chemie", a baffling effect occurred during their research work. The scientists haven't been able to fully account for the effect yet, but it should cause a stir among experts, because it might deliver the key to facilitating the synthesis of many important arylboronates in the future.

Simultaneous bonding of boronate groups

What caused the astonishment? To produce the arylboronates, circular molecules are used in which either a hydrogen atom or a halogen atom (bromine, fluorine or iodine) is replaced with a so-called boronate group. When the Würzburg scientists initiated this exchange using their zinc catalyst, the two actions happened simultaneously: Both the halogen atom and an adjacent hydrogen atom were replaced by boronate. The result is an aryl with two boronate groups. Usually, these molecules are not so easy to synthesise and they are highly interesting for industrial synthesis.

"This was totally unexpected," says Marder, "and we don't know yet which chemical mechanism caused the phenomenon." The chemists already conducted a number of experiments to exclude some reaction channels. Following a process of elimination they hence suggest one possible reaction mechanism in "Angewandte Chemie".

Next steps in research

In a next step, the scientists want to find out what happened exactly during the reaction with the zinc catalyst. And they are working on increasing the yield of the much sought after substance: The reaction produces around 70 percent of molecules with one boronate group and 30 percent with two boronate groups.

Evolution in catalysis

This success is the preliminary climax of an "evolution of the catalysis" in which Marder's team has played a leading role in the past years. In 1995, the catalysed aryl borylation was successfully conducted in Japan for the first time using palladium; the corresponding reaction is named Miyaura borylation after its inventor.

Arylboronates are needed for the Suzuki-Miyaura reaction. In 2010, Akira Suzuki was awarded the Nobel Prize in Chemistry for its successful implementation. In 2009, Marder's team triggered such reactions using copper catalysts at the University of Durham in England back then. Copper is a low-priced transition metal with low toxicity.

Shubhankar Kumar Bose, who joined the University of Würzburg as a Humboldt scholar in 2013, finally had the idea to try zinc as a catalyst. In 2014, the reaction succeeded first with chain-like molecules (alkylboronates) and now also with circular boronates. Their discovery has another advantage: Zinc is even cheaper than copper and non-toxic.

"Zinc-Catalyzed Dual C–X and C–H Borylation of Aryl Halides“,Shubhankar Kumar Bose, Andrea Deißenberger, Antonius Eichhorn, Patrick G. Steel, Zhenyang Lin, Todd B. Marder. Angewandte Chemie International Edition, published online 18 August 2015, DOI: 10.1002/anie.201505603

Contact

Prof. Dr. Todd Marder, Institute of Inorganic Chemistry, University of Würzburg, Phone +49 931 31-85514, todd.marder@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>