Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence for obtaining chemical fingerprints

27.09.2017

Neural networks carry out chemical simulations in record time

Drastic advances in research of artificial intelligence have led to a wide range of fascinating developments in this area over the last decade. Autonomously driven cars, but also everyday applications such as search engines and spam filters illustrate the versatility of methods from the field of artificial intelligence.


The scientists have found a way to accelerate chemical simulations using artificial intelligence.

Copyright: Philipp Marquetand

Infrared spectroscopy is one of the most valuable experimental methods to gain insight into the world of molecules. Infrared spectra are chemical fingerprints that provide information on the composition and properties of substances and materials.

In many cases, these spectra are very complex - a detailed analysis makes computer-aided simulations indispensable. While quantum chemical calculations in principle enable extremely precise prediction of infrared spectra, their applicability in practice is made difficult by the high computational effort associated with them. For this reason, reliable infrared spectra can only be calculated for relatively small chemical systems.

An international group of researchers led by Philipp Marquetand from the Faculty of Chemistry at the University of Vienna has now found a way to accelerate these simulations using artificial intelligence. For this purpose, so-called artificial neural networks are used, mathematical models of the human brain. These are able to learn the complex quantum mechanical relationships that are necessary for the modelling of infrared spectra by using only a few examples.

In this way, the scientists can carry out simulations within a few minutes, which would otherwise take thousands of years even with modern supercomputers - without sacrificing reliability. "We can now finally simulate chemical problems that could not be overcome with the simulation techniques used up to now," says Michael Gastegger, the first author of the study.

Based on the results of this study, the researchers are confident that their method of spectra prediction will be widely used in the analysis of experimental infrared spectra in the future.

###

Publication in Chemical Science

Machine learning molecular dynamics for the simulation of infrared spectra
Michael Gastegger, Jörg Behler, Philipp Marquetand
Chemical Science, 2017, DOI: 10.1039/C7SC02267K

Media Contact

Philipp Marquetand
philipp.marquetand@univie.ac.at
43-142-775-2764

 @univienna

http://www.univie.ac.at/en/ 

Philipp Marquetand | EurekAlert!

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>