Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are Ants the Answer to CO2 Sequestration?

17.07.2014

A 25-year-long study published in GEOLOGY on 14 July provides the first quantitative measurement of in situ calcium-magnesium silicate mineral dissolution by ants, termites, tree roots, and bare ground.


Bullant head detail

This study reveals that ants are one of the most powerful biological agents of mineral decay yet observed. It may be that an understanding of the geobiology of ant-mineral interactions might offer a line of research on how to "geoengineer" accelerated CO2 consumption by Ca-Mg silicates.

Researcher Ronald Dorn of Arizona State University writes that over geological timescales, the dissolution of calcium (Ca) and magnesium (Mg) bearing silicates has led to the graduate drawdown of atmospheric carbon dioxide (CO2) through the accumulation of limestone and dolomite. Many contemporary efforts to sequester CO2 involve burial, with some negative environmental consequences.

Dorn suggests that, given that ant nests as a whole enhance abiotic rates of Ca-Mg dissolution by two orders of magnitude (via biologically enhanced weathering), future research leading to the isolation of ant-based enhancement process could lead to further acceleration.

If ant-based enhancement could reach 100 times or greater, he writes, this process might be able to geo-engineer sequestration of CO2 from the atmosphere. Similarly, ants might also provide clues on geoengineering efficient pathways of calcium carbonate precipitation to sequester atmospheric CO2.

Earth's climate has cooled significantly over the past 65 m.y., likely from hydrologic regulation, vegetation change, and interactions related to tectonism, in part mediated by Ca-Mg silicate mineral dissolution that draws down CO2.

Although speculative, says Dorn, the timing of the expansion in the variety and number of ants in the Paleogene and the Neogene suggests that biologically enhanced weathering by ants could potentially be a part of the puzzle of Cenozoic cooling.

**FEATURED ARTICLE**
Ants as a powerful biotic agent of olivine and plagioclase dissolution
Ronald I. Dorn, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona 85287-5302, USA. Published online 14 July 2014; http://dx.doi.org/10.1130/G35825.1.

16 July 2014
GSA Release No. 14-47
Contact:
Kea Giles
Managing Editor,
GSA Communications
+1-303-357-1057
kgiles@geosociety.org

Kea Giles | Eurek Alert!

Further reports about: CO2 Communications GSA Sequestration abiotic ants atmosphere dioxide pathways

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

Unlocking the secrets of pulmonary hypertension

31.10.2014 | Health and Medicine

2014 Antarctic Ozone Hole Holds Steady

31.10.2014 | Earth Sciences

Hubble Sees 'Ghost Light' From Dead Galaxies

31.10.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>