Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anti-HIV drug target identified by University of Minnesota researchers

19.12.2013
University of Minnesota researchers have discovered a first-of-its-kind series of compounds possessing anti-human immunodeficiency virus (HIV) activity. The compounds present a new target for potential HIV drug development and future treatment options.

Complete findings are printed in today's issue of the Journal of Virology.

The compounds, known as ribonucleoside analogs 8-azaadenosine, formycin A, 3-deazauridine, 5-fluorocytidine and 2'-C-methylcytidine, were found to stop the replication and spread of HIV by blocking HIV DNA synthesis or by inducing lethal mutagenesis. Lethal mutagenesis annihilates HIV by causing it to mutate to the point of extinction.

The compound 3-deazauridine stopped HIV by creating so many mutations in the virus that the virus was no longer able to spread throughout the body by infecting other cells. The other compounds caused early termination of HIV DNA synthesis, again preventing the virus from being able to reproduce. Studies prior to this one determined certain ribonucleosides analogs impact HIV DNA synthesis, a process called reverse transcription. The extent to which they worked was not previously known.

"It's a counterintuitive finding," said University of Minnesota virologist Louis Mansky, Ph.D. "These ribonucleoside analogs were not generally thought to be associated with affecting HIV DNA synthesis – a critical step in virus replication. We don't yet know all the details for how these particular compounds stop the virus in its path."

The research, if translatable, will provide a potentially cost-effective and fresh treatment option to counter HIV's rapid evolution and treat HIV resistance to currently approved anti-HIV drugs. Anti-HIV ribonucleoside analogs are less expensive to create in a laboratory than deoxyribonucleoside analogs, which are key in drugs currently used to stop HIV replication and cell spread. Additionally, the similarity of ribonucleoside analogs to deoxyribonucleosides may help speed up the development process to make full use of this target as a wealth of understanding around ribonucleoside analogs already exists.

The University of Minnesota team responsible for discovering ribonucleoside analogs with anti-HIV activity includes members from the Center for Drug Design, School of Dentistry, Institute for Molecular Virology and Masonic Cancer Center, University of Minnesota.

Funding was provided by National Institutes of Health grant nos. R01 GM56615, R21 AI96937 and T32 DA007097, as well as initial support from a University of Minnesota Center for Drug Design funding agreement.

Miranda Taylor | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: DNA DNA synthesis Design Thinking Drug Delivery HIV Minnesota Virology anti-HIV drug

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>