Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anti-HIV drug target identified by University of Minnesota researchers

19.12.2013
University of Minnesota researchers have discovered a first-of-its-kind series of compounds possessing anti-human immunodeficiency virus (HIV) activity. The compounds present a new target for potential HIV drug development and future treatment options.

Complete findings are printed in today's issue of the Journal of Virology.

The compounds, known as ribonucleoside analogs 8-azaadenosine, formycin A, 3-deazauridine, 5-fluorocytidine and 2'-C-methylcytidine, were found to stop the replication and spread of HIV by blocking HIV DNA synthesis or by inducing lethal mutagenesis. Lethal mutagenesis annihilates HIV by causing it to mutate to the point of extinction.

The compound 3-deazauridine stopped HIV by creating so many mutations in the virus that the virus was no longer able to spread throughout the body by infecting other cells. The other compounds caused early termination of HIV DNA synthesis, again preventing the virus from being able to reproduce. Studies prior to this one determined certain ribonucleosides analogs impact HIV DNA synthesis, a process called reverse transcription. The extent to which they worked was not previously known.

"It's a counterintuitive finding," said University of Minnesota virologist Louis Mansky, Ph.D. "These ribonucleoside analogs were not generally thought to be associated with affecting HIV DNA synthesis – a critical step in virus replication. We don't yet know all the details for how these particular compounds stop the virus in its path."

The research, if translatable, will provide a potentially cost-effective and fresh treatment option to counter HIV's rapid evolution and treat HIV resistance to currently approved anti-HIV drugs. Anti-HIV ribonucleoside analogs are less expensive to create in a laboratory than deoxyribonucleoside analogs, which are key in drugs currently used to stop HIV replication and cell spread. Additionally, the similarity of ribonucleoside analogs to deoxyribonucleosides may help speed up the development process to make full use of this target as a wealth of understanding around ribonucleoside analogs already exists.

The University of Minnesota team responsible for discovering ribonucleoside analogs with anti-HIV activity includes members from the Center for Drug Design, School of Dentistry, Institute for Molecular Virology and Masonic Cancer Center, University of Minnesota.

Funding was provided by National Institutes of Health grant nos. R01 GM56615, R21 AI96937 and T32 DA007097, as well as initial support from a University of Minnesota Center for Drug Design funding agreement.

Miranda Taylor | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: DNA DNA synthesis Design Thinking Drug Delivery HIV Minnesota Virology anti-HIV drug

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>