Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An old new weapon against emerging Chikungunya virus

12.05.2016

Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus

Since 2013, the mosquito-borne Chikungunya virus has spread rapidly through South America and the Caribbean, and is now threatening Southern Europe and the southern US. It causes flu-like symptoms with fever and joint pains, which in some cases can last for months with occasional fatalities.


Chikungunya virus (yellow)

© Pasteur Institute/T. Couderc and M. Lecuit

No treatment or vaccine exists so far - serving as an urgent reminder of just how poorly the time-consuming process of drug development is able to meet the threat posed by newly emerging viruses.

Scientists at the Max Planck Institute for Infection Biology in Berlin have now teamed up with colleagues at the Paris-based Institut Pasteur to validate a new approach in the quest for a therapy – combining high-throughput screening for host cell proteins without which the virus cannot replicate, with so-called ‘drug repositioning’, i.e. utilizing an existing drug for new indications. They identified two existing compounds that were effective against the virus in an animal model. Their findings not only bring a Chikungunya treatment within potential reach, but also provide the proof of principle that this approach can be rapidly successful for newly emerging infectious diseases.

The recent Ebola and Zika outbreaks have highlighted how quickly new epidemics can spread in the age of global travel and how helpless modern medicine still is when faced with infectious diseases for which no treatment has been generated.

A case in point is Chikungunya fever, which has caused a rising epidemic since it first spread to the Caribbean and Latin America, with more than a million reported cases, and is now poised to spread into the US. While the symptoms are frequently mild, some patients experience crippling arthritic pain that can last for years.

Standard drug development procedures are both expensive and time consuming and the success rates are low. However, emerging epidemics require fast reaction. Professor Thomas F. Meyer with his group at the Max Planck Institute for Infection Biology have now pioneered a new strategy to achieve faster success: In a first step the overall requirement of host factors involved in the infection are identified and then, in a second phase, known drugs effective against the identified host factors are used to block the infection. This rational drug-repositioning strategy could speed up the development process dramatically and allow fast proof of concept.

The principle behind the rational drug-repositioning strategy is the emerging concept that all pathogens depend on proteins produced by the host cell in order to replicate successfully. The challenge lies in the identification of such critical host cell targets. The team found more than 100 host proteins to be required by Chikungunya, by using a robotic system at the MPIIB to knock out each human gene in turn, before infecting the cells with the virus and analysing how well it was able to replicate.

Together with the Marc Lecuit's group at Institut Pasteur, who are leading experts on the disease, and collaborators at the Steinbeis Innovation Center and the Charité in Berlin, the University of München and the Institute of Technology in Tartu, Estonia, they next searched for established compounds known to target the most promising host factors before testing them in vitro and in animal models of Chikungunya infection. This process resulted in two drugs, one of them an already widely used antipsychotic, which exhibit therapeutic activity in mice at safe doses, especially when used in combination. Further studies are now required to develop an optimized clinical therapy.

Excitingly, the results also revealed another potential benefit: ‘When we compared the requirement for every human gene in multiple unrelated viruses’ explains Dr Alexander Karlas, a leading virologist at MPIIB. ‘We found that several of the host proteins required by the Chikungunya virus are also required by several other, unrelated viruses as well.’ This potentially opens up a path for developing a range of broadly acting antivirals – which may give a much-needed boost in the battle against emerging viruses.

Contact

Prof. Dr. Thomas F. Meyer
Phone:+49 30 28460-400Fax:+49 30 28460-401
 

Dr. Rike Zietlow

Max Planck Institute for Infection Biology, Berlin

Phone:+49 30 28460-461

Original publication

Karlas, A., Berre, B., Couderc, T., Varjak, M., Braun, P., Meyer, M., Gangneux, N., Karo-Astover, L., Weege, F., Raftery, M., Schönrich, G., Klemm, U., Wurzlbauer, A, Bracher, F., Merits, A., Meyer, T.F. and Lecuit, M
A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

Prof. Dr. Thomas F. Meyer | Max Planck Institute for Infection Biology, Berlin
Further information:
https://www.mpg.de/10500598/chikungunya?filter_order=L&research_topic=

Further reports about: Biology Chikungunya Infection Max Planck Institute drugs

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>