Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An old new weapon against emerging Chikungunya virus

12.05.2016

Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus

Since 2013, the mosquito-borne Chikungunya virus has spread rapidly through South America and the Caribbean, and is now threatening Southern Europe and the southern US. It causes flu-like symptoms with fever and joint pains, which in some cases can last for months with occasional fatalities.


Chikungunya virus (yellow)

© Pasteur Institute/T. Couderc and M. Lecuit

No treatment or vaccine exists so far - serving as an urgent reminder of just how poorly the time-consuming process of drug development is able to meet the threat posed by newly emerging viruses.

Scientists at the Max Planck Institute for Infection Biology in Berlin have now teamed up with colleagues at the Paris-based Institut Pasteur to validate a new approach in the quest for a therapy – combining high-throughput screening for host cell proteins without which the virus cannot replicate, with so-called ‘drug repositioning’, i.e. utilizing an existing drug for new indications. They identified two existing compounds that were effective against the virus in an animal model. Their findings not only bring a Chikungunya treatment within potential reach, but also provide the proof of principle that this approach can be rapidly successful for newly emerging infectious diseases.

The recent Ebola and Zika outbreaks have highlighted how quickly new epidemics can spread in the age of global travel and how helpless modern medicine still is when faced with infectious diseases for which no treatment has been generated.

A case in point is Chikungunya fever, which has caused a rising epidemic since it first spread to the Caribbean and Latin America, with more than a million reported cases, and is now poised to spread into the US. While the symptoms are frequently mild, some patients experience crippling arthritic pain that can last for years.

Standard drug development procedures are both expensive and time consuming and the success rates are low. However, emerging epidemics require fast reaction. Professor Thomas F. Meyer with his group at the Max Planck Institute for Infection Biology have now pioneered a new strategy to achieve faster success: In a first step the overall requirement of host factors involved in the infection are identified and then, in a second phase, known drugs effective against the identified host factors are used to block the infection. This rational drug-repositioning strategy could speed up the development process dramatically and allow fast proof of concept.

The principle behind the rational drug-repositioning strategy is the emerging concept that all pathogens depend on proteins produced by the host cell in order to replicate successfully. The challenge lies in the identification of such critical host cell targets. The team found more than 100 host proteins to be required by Chikungunya, by using a robotic system at the MPIIB to knock out each human gene in turn, before infecting the cells with the virus and analysing how well it was able to replicate.

Together with the Marc Lecuit's group at Institut Pasteur, who are leading experts on the disease, and collaborators at the Steinbeis Innovation Center and the Charité in Berlin, the University of München and the Institute of Technology in Tartu, Estonia, they next searched for established compounds known to target the most promising host factors before testing them in vitro and in animal models of Chikungunya infection. This process resulted in two drugs, one of them an already widely used antipsychotic, which exhibit therapeutic activity in mice at safe doses, especially when used in combination. Further studies are now required to develop an optimized clinical therapy.

Excitingly, the results also revealed another potential benefit: ‘When we compared the requirement for every human gene in multiple unrelated viruses’ explains Dr Alexander Karlas, a leading virologist at MPIIB. ‘We found that several of the host proteins required by the Chikungunya virus are also required by several other, unrelated viruses as well.’ This potentially opens up a path for developing a range of broadly acting antivirals – which may give a much-needed boost in the battle against emerging viruses.

Contact

Prof. Dr. Thomas F. Meyer
Phone:+49 30 28460-400Fax:+49 30 28460-401
 

Dr. Rike Zietlow

Max Planck Institute for Infection Biology, Berlin

Phone:+49 30 28460-461

Original publication

Karlas, A., Berre, B., Couderc, T., Varjak, M., Braun, P., Meyer, M., Gangneux, N., Karo-Astover, L., Weege, F., Raftery, M., Schönrich, G., Klemm, U., Wurzlbauer, A, Bracher, F., Merits, A., Meyer, T.F. and Lecuit, M
A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

Prof. Dr. Thomas F. Meyer | Max Planck Institute for Infection Biology, Berlin
Further information:
https://www.mpg.de/10500598/chikungunya?filter_order=L&research_topic=

Further reports about: Biology Chikungunya Infection Max Planck Institute drugs

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>