Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An injectable guidance system for nerve cells

05.04.2017

In many tissues of the human body, such as nerve tissue, the spatial organization of cells plays an important role. Nerve cells and their long protrusions assemble into nerve tracts and transport information throughout the body. When such a tissue is injured, an accurate spatial orientation of the cells facilitates the healing process. Scientists from the DWI – Leibniz Institute for Interactive Materials in Aachen developed an injectable gel, which can act as a guidance system for nerve cells. They recently published their results obtained from cell culture experiments in the journal ‚Nano Letters‘.

Inside the body, an extracellular matrix surrounds the cells. It provides mechanical support and promotes spatial tissue organization. In order to regenerate damaged tissue, an artificial matrix can temporally replace the natural extracellular matrix.


Dr.-Ing. Laura De Laporte and PhD student Jonas Rose analyze the orientation of nerve cells (red) along the paths provided by gel rods (green).

J. Hillmer, DWI

This matrix needs to mimic the natural cell environment in order to efficiently stimulate the regenerative potential of the surrounding tissue. Solid implants, however, may impair remaining healthy tissue whereas soft, injectable materials allow for a minimal invasive therapy, which is particularly beneficial for sensitive tissues, such as the spinal cord. Unfortunately, up to now, artificial soft materials did not yet reproduce the complex structures and spatial properties of natural tissues.

A team of scientists, headed by Dr.-Ing. Laura De Laporte from the DWI – Leibniz Institute for Interactive Materials, developed a new, minimal invasive material termed ‚Anisogel‘. “If you aim to enhance the regeneration of damaged spinal cord tissue, you need to come up with a new material concept,” says Jonas Rose. He is a PhD student working on the Anisogel project.

“We use micrometer-sized building blocks and assemble them into 3D hierarchically organized structures.” Anisogel consists of two gel components. Many, microscopically small, soft rod-shaped gels, incorporated with a low amount of magnetic nanoparticles, are the first component. Using a weak magnetic field, scientists can orient the gel rods, after which a very soft surrounding gel matrix is crosslinked, forming the structural guidance system.

The gel rods, being stabilized by the gel matrix, maintain their orientation, even after removal of the magnetic field. Using cell culture experiments, the researchers demonstrate that cells can easily migrate through this gel matrix, and that nerve cells and fibroblasts orient along the paths provided by this guidance system.

A low amount of one percent gel rods inside the entire Anisogel volume is proven to be sufficient to induce linear nerve growth. The material, developed by the Aachen-based scientists, is the first injectable biomaterial, which assembles into a controlled oriented structure after injection and provides a functional guidance system for cells.

„To meet the complex requirements of this approach, the project team includes researchers with very different areas of expertise,“ says Laura De Laporte, whose research is supported by a Starting Grant of the European Research Council. „This interdisciplinary work is what makes this project so fascinating.“

„Although our cell culture experiments were successful, we are prepared to go a long way to translate our Anisogel into a medical therapy. In collaboration with the Uniklinik RWTH Aachen, we currently plan pre-clinical studies to further test and optimize this material.“

With its work on bioactive materials, the DWI – Leibniz Institute for Interactive Materials contributes to the research network ‚Leibniz Health Technologies’. Within this network, 14 institutes of the Leibniz Association work on specific technical solutions for urgent medical problems. The network’s overall motivation is to improve medical treatment of patients. Its interdisciplinary approach aims to coalesce prevention, diagnostics and therapy, thereby increasing the health-related quality of life.

Publication:
Rose, J. C., Cámara-Torres, M., Rahimi, K., Köhler, J., Möller, M., & De Laporte, L. (2017). Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance. Nano Letters.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft
Further information:
http://www.dwi.rwth-aachen.de

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>