Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An approach to new antiviral medicines using a combination of genomics and proteomics

10.12.2015

World-wide recurrent seasonal influenza epidemic are mainly caused by influenza A viruses. However, these are frequently resistant to currently available antiviral medications. Scientists from the Paul-Ehrlich-Institut together with international research collaborators have identified a new target protein, which can be used to help develop novel antivirals in future. This was achieved by analysing the interactions between the influenza A virus and the infected cells in humans. Cell Host Microbe reports on these research results in its online edition of 9 December.

Between two and ten million people are infected with influenza viruses, that cause seasonal annual epidemics of disease. Influenza viruses are subdivided into influenza A, B, and C and their various subtypes. Influenza A viruses often constitute the main type of the circulating influenza viruses world-wide.


Human lung carcinoma cells infected with influenza A virus (nucleus in blue). The viral proteins haemagglutinin (green) and matrix protein 2 (red) are mainly located on the plasma membrane.

Source: Center for Microscopy and Image Analysis, University of Zurich

Influenza viruses undergo rapid genetic changes, therefore, influenza vaccines are adapted to the circulating seasonal influenza viruses each year. Moreover, drugs against influenza viruses, so-called antivirals, are required to treat infected individuals and are needed as a future treatment option for the occurrence of new (influenza) viruses – especially in the event of a pandemic. Meanwhile, however, a great number of influenza A viruses have become resistant to the currently available antiviral medications.

An approach to new effective antivirals against viruses is to inhibit the interaction between the virus and its host, i.e. the affected cells in the infected individual, since viruses use human cell proteins to reproduce and proliferate. A blockage of the interaction between virus proteins and cell proteins could inhibit the reproduction of the viruses, thus treating influenza successfully.

So far, the exact mechanism of interaction of influenza A virus with human cells have not been fully understood. Extensive systems-level data are available worldwide, but are seemingly discordant.

A joint collaborative research effort between four international research groups – including the group of Dr Renate König, head of the research team “Cellular Aspects of Pathogen-Host Interactions” at the Paul-Ehrlich-Institut have succeeded in generating a biochemical “map” of essential influenza A virus/host interactions. They achieved this by combining extensive genomic (relating to genes) and proteomic (relating to proteins) data analyses.

With the help of this map, the scientists identified UBR4 (ubiquitin protein ligase E3 component n-recognin 4), a protein in human cells which is responsible for “budding”, i.e. separating the viruses from the cell membrane, the exiting of the pathogen from the cell and subsequent proliferation within and outside the body. The scientists assume that UBR4 is “borrowed” by the virus to deactivate a protection mechanism in humans using its enzymatic function.

According to the scientists, this protection mechanism is as yet not known in detail. The scientists assume that it causes degradation of the viral proteins thus stopping them from being transported to the cell membrane. Based on this model, the influenza A virus thus buys itself a safe passage to the cell membrane. A novel approach to developing new antiviral drugs against the influenza A virus could be to strengthen the above mentioned protective mechanism.

“One advantage of active substances acting on cellular (human) proteins essential for the virus is the fact that the human genome does not constantly change so that active substances should also show long-term efficacy”, as Dr. König explains. Another advantage is that drugs that target cellular proteins may be effective against quite different viruses which utilize the same human protein machinery, of course, without disrupting essential cell functions. And finally, cellular proteins as target structures have the potential to be used to enhance the efficacy of vaccines.

Original publication

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A,, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yángüez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, König R#, Stertz S#, García-Sastre A#, Chanda SK# (2015):
Meta- and Orthogonal Integration of Influenza ‘OMICs’ Data Reveals UBR4 as a Critical Regulator of M2 Ion Channel Membrane Trafficking. Cell Host Microbe. 2015 18: 723-735.
# Co-senior authors

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

Publication Abstract
http://www.pei.de/EN/information/journalists-press/press-releases/2015/20-approa... - This press release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>