Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An approach to new antiviral medicines using a combination of genomics and proteomics


World-wide recurrent seasonal influenza epidemic are mainly caused by influenza A viruses. However, these are frequently resistant to currently available antiviral medications. Scientists from the Paul-Ehrlich-Institut together with international research collaborators have identified a new target protein, which can be used to help develop novel antivirals in future. This was achieved by analysing the interactions between the influenza A virus and the infected cells in humans. Cell Host Microbe reports on these research results in its online edition of 9 December.

Between two and ten million people are infected with influenza viruses, that cause seasonal annual epidemics of disease. Influenza viruses are subdivided into influenza A, B, and C and their various subtypes. Influenza A viruses often constitute the main type of the circulating influenza viruses world-wide.

Human lung carcinoma cells infected with influenza A virus (nucleus in blue). The viral proteins haemagglutinin (green) and matrix protein 2 (red) are mainly located on the plasma membrane.

Source: Center for Microscopy and Image Analysis, University of Zurich

Influenza viruses undergo rapid genetic changes, therefore, influenza vaccines are adapted to the circulating seasonal influenza viruses each year. Moreover, drugs against influenza viruses, so-called antivirals, are required to treat infected individuals and are needed as a future treatment option for the occurrence of new (influenza) viruses – especially in the event of a pandemic. Meanwhile, however, a great number of influenza A viruses have become resistant to the currently available antiviral medications.

An approach to new effective antivirals against viruses is to inhibit the interaction between the virus and its host, i.e. the affected cells in the infected individual, since viruses use human cell proteins to reproduce and proliferate. A blockage of the interaction between virus proteins and cell proteins could inhibit the reproduction of the viruses, thus treating influenza successfully.

So far, the exact mechanism of interaction of influenza A virus with human cells have not been fully understood. Extensive systems-level data are available worldwide, but are seemingly discordant.

A joint collaborative research effort between four international research groups – including the group of Dr Renate König, head of the research team “Cellular Aspects of Pathogen-Host Interactions” at the Paul-Ehrlich-Institut have succeeded in generating a biochemical “map” of essential influenza A virus/host interactions. They achieved this by combining extensive genomic (relating to genes) and proteomic (relating to proteins) data analyses.

With the help of this map, the scientists identified UBR4 (ubiquitin protein ligase E3 component n-recognin 4), a protein in human cells which is responsible for “budding”, i.e. separating the viruses from the cell membrane, the exiting of the pathogen from the cell and subsequent proliferation within and outside the body. The scientists assume that UBR4 is “borrowed” by the virus to deactivate a protection mechanism in humans using its enzymatic function.

According to the scientists, this protection mechanism is as yet not known in detail. The scientists assume that it causes degradation of the viral proteins thus stopping them from being transported to the cell membrane. Based on this model, the influenza A virus thus buys itself a safe passage to the cell membrane. A novel approach to developing new antiviral drugs against the influenza A virus could be to strengthen the above mentioned protective mechanism.

“One advantage of active substances acting on cellular (human) proteins essential for the virus is the fact that the human genome does not constantly change so that active substances should also show long-term efficacy”, as Dr. König explains. Another advantage is that drugs that target cellular proteins may be effective against quite different viruses which utilize the same human protein machinery, of course, without disrupting essential cell functions. And finally, cellular proteins as target structures have the potential to be used to enhance the efficacy of vaccines.

Original publication

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A,, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yángüez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, König R#, Stertz S#, García-Sastre A#, Chanda SK# (2015):
Meta- and Orthogonal Integration of Influenza ‘OMICs’ Data Reveals UBR4 as a Critical Regulator of M2 Ion Channel Membrane Trafficking. Cell Host Microbe. 2015 18: 723-735.
# Co-senior authors

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

Publication Abstract - This press release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>