Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An appetite suppressant with side effects

04.10.2016

Neurogeneticists from the University of Würzburg have discovered a peptide in Drosophila that has a strong impact on the fly's feeding and sleeping habits. At the same time, it is associated with the insects' circadian clock.

Taking a nap after lunch to digest and relax sounds like a good strategy. However, feeling drowsy after breakfast already would make less sense. Scientists from the University of Würzburg have now identified a peptide that could assume a key role in the complex interactions of hunger, sleep and digestion in the fruit fly Drosophila. The receptors which these peptides act on have closely related counterparts in humans.


Allatostatin A-producing cells in the nervous system and midgut (magenta) and genetic labeling (green) in fruit flies.

Photo: Team Wegener

Researching genetically modified fruit flies

The peptide is called allatostatin A in scientific speak. "We already knew that allatostatin is produced by both cells in the brain and in the intestine of Drosophila. But we did not know what effects they have there," Professor Christian Wegener describes the starting point of the new study sponsored by the Deutsche Forschungsgemeinschaft (DFG). Wegener is a neurogeneticist at the Department of Neurobiology and Genetics at the University of Würzburg. Together with his PhD student Jiangtian Chen, he investigated which influence the peptide has on the flies' behaviour.

The researchers studied fruit flies that were genetically modified to have only six allatostatin-producing neurons in their brains. Furthermore, these cells were fitted with a kind of temperature-controlled molecular "switch". An ambient temperature above 29 degrees Celsius caused the allatostatin signal to be "switched on" whereas it was "switched off" at lower temperatures.

The study results

The study provided surprising results: when the cells released allatostatin, the fruit flies consumed much less food than insects from the control group. At the same time, they moved much less compared with the non-modified animals. At first, the scientists were uncertain about the cause: "When looking at the insects, it's not evident whether they don't have the energy to walk because they don't eat or whether they are unable to move for other reasons. Also it is unclear whether they are hungry or whether they just don't need so much because they exhibit so little activity," Professor Wegener outlines the dilemma.

Further experiments were required to answer these questions. They demonstrated that fruit flies with activated allatostatin signalling do not seem to be hungry. When the scientists lowered the ambient temperature back to values below 29 degrees – thereby switching peptide release off – the insects did not consume more food than the control group. So they were obviously not ravenous. Their locomotor system, too, worked normally – they exhibited no differences compared to the control group in terms of the speed with which they climbed up a tube.

But there was one distinct difference in the locomotor behaviour: Fruit flies that are temporarily exposed to slight shaking on a kind of "vibrating plate" usually respond with a significant increase in locomotor activity. Insects with a high allatostatin level did not deviate from this behaviour – however only in the morning. At noon and in the evening, their activity patterns were unaffected and the flies remained stationary. This finding put the scientists onto the right track: "If the fruit flies move so little, it might be that they are asleep," Wegener says. They were right: Fruit flies with activated allatostatin A cells sleep during 1,400 minutes of the day's 1,440 minutes.

Surprising link to the circadian clock

Normally, the work of Christian Wegener and Jiangtian Chen would have ended at this point had it not been for the cooperation with Professor Charlotte Förster, Head of the Department of Neurobiology and Genetics, within the DFG Collaborative Research Center 1047 "Insect Timing". An expert in circadian clocks, Förster noticed that the six allatostatin-producing neurons in the brain of Drosophila are located in the direct vicinity of clock neuron terminals. The two researchers acted on her suggestion to take a closer look at this aspect.

What they found was that allatostatin neuron arborisations overlap exactly with clock neuron arborisations, and carry receptors for the neuropeptide PDF which is released by the clock neurons. But the circadian clock's influence at this point is comparably small. "When the PDF receptor is activated, fruit flies will sleep a little longer in the morning and in the evening. This is about the only change we were able to identify," says Christian Wegener. After all, any other findings would have surprised the researchers: "There are many peptides that control the sleeping and feeding behaviour." So it might be that the recently discovered mechanism is not a main path but an ancillary path of sleep control that connects sleeping with feeding habits.

Similarities to human receptor

There is another interesting aspect from a scientific viewpoint: The cells of vertebrates, and hence of humans, do not produce allatostatin. But the receptor on which the peptide acts has a comparable counterpart, namely the galanin receptor. "It controls sleep, eating behaviour and the peristalsis of the digestive system and hence adjusts to the digestion phase," Wegener says. However, it is unknown whether the galanin receptor is also associated with the circadian clock. Further studies are necessary to answer this question.

In the future, Christian Wegener and his team plan to focus on the fruit fly larvae which eat constantly and never sleep. Moreover, the allatostatin-producing cells in the larvae could be switched off selectively in the intestine or the brain, which was impossible in adult flies.

Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF. Jiangtian Chen, Wencke Reiher, Christiane Hermann-Luibl, Azza Sellami, Paola Cognigni, Shu Kondo, Charlotte Helfrich-Förster Jan A. Veenstra, Christian Wegener. PLOS Genetics, DOI:10.1371/journal.pgen.1006346

Contact

Prof. Dr. Christian Wegener, +49 931 31-85380, christian.wegener@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>