Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An appetite suppressant with side effects


Neurogeneticists from the University of Würzburg have discovered a peptide in Drosophila that has a strong impact on the fly's feeding and sleeping habits. At the same time, it is associated with the insects' circadian clock.

Taking a nap after lunch to digest and relax sounds like a good strategy. However, feeling drowsy after breakfast already would make less sense. Scientists from the University of Würzburg have now identified a peptide that could assume a key role in the complex interactions of hunger, sleep and digestion in the fruit fly Drosophila. The receptors which these peptides act on have closely related counterparts in humans.

Allatostatin A-producing cells in the nervous system and midgut (magenta) and genetic labeling (green) in fruit flies.

Photo: Team Wegener

Researching genetically modified fruit flies

The peptide is called allatostatin A in scientific speak. "We already knew that allatostatin is produced by both cells in the brain and in the intestine of Drosophila. But we did not know what effects they have there," Professor Christian Wegener describes the starting point of the new study sponsored by the Deutsche Forschungsgemeinschaft (DFG). Wegener is a neurogeneticist at the Department of Neurobiology and Genetics at the University of Würzburg. Together with his PhD student Jiangtian Chen, he investigated which influence the peptide has on the flies' behaviour.

The researchers studied fruit flies that were genetically modified to have only six allatostatin-producing neurons in their brains. Furthermore, these cells were fitted with a kind of temperature-controlled molecular "switch". An ambient temperature above 29 degrees Celsius caused the allatostatin signal to be "switched on" whereas it was "switched off" at lower temperatures.

The study results

The study provided surprising results: when the cells released allatostatin, the fruit flies consumed much less food than insects from the control group. At the same time, they moved much less compared with the non-modified animals. At first, the scientists were uncertain about the cause: "When looking at the insects, it's not evident whether they don't have the energy to walk because they don't eat or whether they are unable to move for other reasons. Also it is unclear whether they are hungry or whether they just don't need so much because they exhibit so little activity," Professor Wegener outlines the dilemma.

Further experiments were required to answer these questions. They demonstrated that fruit flies with activated allatostatin signalling do not seem to be hungry. When the scientists lowered the ambient temperature back to values below 29 degrees – thereby switching peptide release off – the insects did not consume more food than the control group. So they were obviously not ravenous. Their locomotor system, too, worked normally – they exhibited no differences compared to the control group in terms of the speed with which they climbed up a tube.

But there was one distinct difference in the locomotor behaviour: Fruit flies that are temporarily exposed to slight shaking on a kind of "vibrating plate" usually respond with a significant increase in locomotor activity. Insects with a high allatostatin level did not deviate from this behaviour – however only in the morning. At noon and in the evening, their activity patterns were unaffected and the flies remained stationary. This finding put the scientists onto the right track: "If the fruit flies move so little, it might be that they are asleep," Wegener says. They were right: Fruit flies with activated allatostatin A cells sleep during 1,400 minutes of the day's 1,440 minutes.

Surprising link to the circadian clock

Normally, the work of Christian Wegener and Jiangtian Chen would have ended at this point had it not been for the cooperation with Professor Charlotte Förster, Head of the Department of Neurobiology and Genetics, within the DFG Collaborative Research Center 1047 "Insect Timing". An expert in circadian clocks, Förster noticed that the six allatostatin-producing neurons in the brain of Drosophila are located in the direct vicinity of clock neuron terminals. The two researchers acted on her suggestion to take a closer look at this aspect.

What they found was that allatostatin neuron arborisations overlap exactly with clock neuron arborisations, and carry receptors for the neuropeptide PDF which is released by the clock neurons. But the circadian clock's influence at this point is comparably small. "When the PDF receptor is activated, fruit flies will sleep a little longer in the morning and in the evening. This is about the only change we were able to identify," says Christian Wegener. After all, any other findings would have surprised the researchers: "There are many peptides that control the sleeping and feeding behaviour." So it might be that the recently discovered mechanism is not a main path but an ancillary path of sleep control that connects sleeping with feeding habits.

Similarities to human receptor

There is another interesting aspect from a scientific viewpoint: The cells of vertebrates, and hence of humans, do not produce allatostatin. But the receptor on which the peptide acts has a comparable counterpart, namely the galanin receptor. "It controls sleep, eating behaviour and the peristalsis of the digestive system and hence adjusts to the digestion phase," Wegener says. However, it is unknown whether the galanin receptor is also associated with the circadian clock. Further studies are necessary to answer this question.

In the future, Christian Wegener and his team plan to focus on the fruit fly larvae which eat constantly and never sleep. Moreover, the allatostatin-producing cells in the larvae could be switched off selectively in the intestine or the brain, which was impossible in adult flies.

Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF. Jiangtian Chen, Wencke Reiher, Christiane Hermann-Luibl, Azza Sellami, Paola Cognigni, Shu Kondo, Charlotte Helfrich-Förster Jan A. Veenstra, Christian Wegener. PLOS Genetics, DOI:10.1371/journal.pgen.1006346


Prof. Dr. Christian Wegener, +49 931 31-85380,

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>