Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergy Research: Response to House Dust Mites is Age-Dependent

26.08.2016

In adults with a house dust mite allergy, a cascade of inflammatory signals on the surface of the airways leads to airway remodeling. This process cannot be influenced by standard cortisone therapy. Researchers at Helmholtz Zentrum München and the Technical University of Munich have reported these findings in the latest issue of the ‘Journal of Allergy and Clinical Immunology’.

Worldwide more than 300 million people suffer from asthma. A common symptom in this context is airway remodeling: a pathological remodeling of the airway structure due to misdirected repair processes.* Depending on the age of the patient, messenger substances called leukotrienes play an important role here, as researchers led by Dr. Julia Esser-von Bieren have now discovered.


Immunohistochemical staining of nasal polyp tissue: components of the leukotriene cascade (green and red) are active in epithelial cells and infiltrating inflammatory cells (cell nuclei in blue).

Source: Helmholtz Zentrum München

“Although drugs that target the leukotriene cascade exist, we still know too little about the exact disease mechanisms,” said the group leader at the Center for Allergy and Environment (ZAUM), a joint research center of Helmholtz Zentrum München and the Technical University of Munich.

In the current study, the researchers were particularly interested in whether there were age-dependent differences in the expression of an allergy to dust mites. In collaboration with Professor Benjamin Marsland of the University Hospital CHUV in Lausanne, they studied a corresponding experimental model. It was found that an extract from house dust mites elicited different responses, depending on the time window in which it came in contact with the immune system.

“It is striking that leukotrienes appear to play an important role, especially when adults acquire an allergy,” said Katharina Dietz, lead author of the study. “They are part of a whole cascade of signals ultimately leading to a response to the house dust mite extract.” According to the study, in particular the signaling protein Wnt5a, the enzymes transglutaminase 2 and phospholipase A2 as well as the leukotrienes themselves are involved. The scientists were able to confirm these results in human cells and in tissue from nasal polyps of patients.

Cortisone cannot halt progression

It was also interesting for the researchers to find out where these molecules come from. They showed that especially the epithelial cells of the bronchi are the drivers of the cascade. “Previously it was assumed that in allergies, leukotrienes are mainly produced by certain white blood cells, the eosinophil granulocytes,” said study leader Esser-von Bieren.

However, the results are not only relevant for understanding the disease, but also for the therapy. “This cascade cannot be stopped through treatment with cortisone, the standard treatment for allergy,” said Esser-von Bieren. She therefore considers it possible that the results could also impact allergy therapy: “The strong presence of the leukotriene cascade in the inflamed airway epithelium refutes the common assumption that structural cells can be neglected as leukotriene producers. On the contrary: In a chronic, cortisone-resistant inflammation in the form of asthma or nasal polyps, the use of drugs targeting the epithelial leukotriene cascade should be considered, depending on the age and allergy status of the patients.“
Further Information

Background:
This collaborative study involved experts from different subareas: The ZAUM researchers from Munich are very familiar with responses of the airway epithelium. In a recent study, they showed how allergies influence the surface of the airways. The Swiss researchers from Lausanne are focused on elucidating the temporal sequence of allergy processes. Among other research objectives, they are studying the pathogenesis of asthma in the early stage of development and which role microbes play in this regard.

*This includes e.g. the increased deposition of connective tissue in the wall of the bronchi, an increase of mucus-producing gland cells in the bronchial epithelium or increased growth of muscle cells in the airway walls. An important trigger for this misdirected remodeling is the apparent ongoing inflammation in the airways.

Original Publication:
Dietz, K. et al. (2016): Age dictates a steroid resistant cascade of Wnt5a, transglutaminase-2 and leukotrienes in inflamed airways. Journal of Allergy and Clinical Immunology, doi: 10.1016/j.jaci.2016.07.014

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Center of Allergy & Environment (ZAUM) in Munich is a joint undertaking by the Helmholtz Zentrum München and the Technical University of Munich (TUM). This cooperation, which is the only one of its kind in the German research landscape, is dedicated to interdisciplinary basic research and forms a link between clinicians at the hospital and clinical research staff at the university. Thanks to this approach, findings about the mechanisms that lie behind allergies are translated into preventive and therapeutic measures. The development of effective, individually tailored treatments enables better care to be provided for allergy-sufferers. http://www.zaum-online.de

Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 39,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. http://www.tum.de/en/homepage

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Dr. Julia Esser-von Bieren, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Allergy Research & Center of Allergy and Environment, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 4140 3464 - E-mail: julia.esser-von-bieren@tum.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Allergy Allergy Research Helmholtz Mites epithelium

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>