Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Sugars Are Not Alike: Isomaltulose Better Than Table Sugar for People with Type 2 Diabetes

15.02.2016

Like sucrose (table sugar), the natural disaccharide isomaltulose (PalatinoseTM) consists of glucose and fructose, but it is apparently more suitable for people with type 2 diabetes with regard to regulating blood glucose levels. This has now been confirmed in a new study carried out by the German Institute of Human Nutrition (DIfE), a partner in the German Center for Diabetes Research (DZD). The study showed for the first time on subjects with type 2 diabetes that the favorable metabolic effect of isomaltulose is due to the almost opposing release profiles of the gut hormones GLP-1 and GIP*.

The research team led by Farnaz Keyhani-Nejad and Andreas F. H. Pfeiffer of DIfE has now published its results in the journal Diabetes Care (Keyhani-Nejad et al. 2016; 39:e1-e2; DOI: 10.2337/dc15-1891).


sugar cubes

Till Budde/DIfE

Following isomaltulose ingestion, the rise in the blood glucose concentration is lower than after the intake of table sugar, although both types of sugar are composed of the same simple sugars and are completely digested and absorbed in the small intestine.

This has been confirmed in various studies, but the metabolic mechanisms underlying this observation have been less explored. For this reason, the DIfE researchers investigated the effect of 50 g isomaltulose and 50 g sucrose in a crossover study of 10 adults with type 2 diabetes.

In the current study which compared isomaltulose with table sugar, the mean peak blood glucose concentrations after isomaltulose ingestion were 20 percent lower. Insulin secretion was even 55 percent lower. Likewise, the GIP concentration in blood increased only a little and reached its peak value only after 60 minutes.

After intake of table sugar, however, GIP levels rose already after 15 minutes by more than double and then dropped sharply after about 60 minutes. With regard to GLP-1 secretion the scientists also observed differences between the two sugars. After ingestion of isomaltulose the GLP-1 levels rose in the test subjects faster and were sustained longer than following the intake of table sugar. With regard to glucagon secretion, the scientists found no significant differences.

The scientists assume that the different metabolic effects of the two disaccharides, which are composed of one molecule of glucose and fructose, are due to the different chemical bond of the monosaccharides. While the digestive enzymes cleave sucrose quite rapidly into glucose and fructose, this process takes longer with isomaltulose. Thus, a large part of the isomaltulose passes uncleaved through the upper portions of the small intestine where the GIP-producing K cells are found, which thus cannot substantially stimulate the GIP secretion.

The GLP-1-producing L cells, by contrast, are found in the more distally located portions of the intestine and now due to the increased presence of glucose and fructose increasingly secrete the gut hormone. Furthermore, as previous studies of the scientists have shown, GIP may have an unfavorable effect on the metabolism and trigger fatty liver and inflammatory processes in adipose tissue. This suggests that the adverse effects of table sugar arise primarily from the hormone response, that is, they are induced by increased GIP secretion.

In summary, it can be said that isomaltulose in the intestine reduces GIP secretion, increases GLP-1 secretion, and at the same time preserves a certain measure of insulin secretion, thus preventing severe fluctuations in blood glucose levels. “This is particularly advantageous for people with type 2 diabetes since their blood glucose levels tend to get out of control. With regard to the regulation of the blood glucose metabolism, isomaltulose is therefore much better than common table sugar“, said the endocrinologist Pfeiffer, who heads the Department of Clinical Nutrition at DIfE.

“However, it’s important to realize that it provides the same number of calories as other types of sugar. Moreover, it doesn’t taste as sweet, so you are tempted to eat more than you would with table sugar. If you don’t use the energy you consume, for example through sufficient physical activity, this will soon show up as weight gain,” Pfeiffer added. People who are overweight are more susceptible to cardiovascular disease and certain cancers and not least have a higher risk of type 2 diabetes. This has been confirmed in numerous studies, according to Pfeiffer. Therefore, the well-known adage also applies to isomaltulose: The dose makes the poison.

Background Information:

*GLP-1 and GIP:
Glucagon-like peptide-1 (GLP-1): In the intestine, L cells secrete GLP-1 after stimulation through carbohydrates (e.g. sugar), proteins or fats. The peptide hormone has a half-life of less than two minutes. It stimulates insulin secretion and at the same time inhibits the secretion of the hormone insulin antagonist glucagon. Both of these lead to a drop in blood glucose levels. Furthermore, studies indicate that it restores the insulin sensitivity of the beta cells in the pancreas and counteracts cell death. In addition, it delays the absorption of carbohydrates from the intestine and induces satiety (Source: Wikipedia).

Gastric inhibitory polypeptide (GIP): After food intake, the K cells in the small intestine secrete GIP. Evidence shows that the main function of GIP is to stimulate insulin secretion by the beta cells.
If the effect of GIP is inhibited through a high-fat diet, this counteracts the development of obesity and insulin resistance. In addition, scientists suspect that GIP plays a crucial role in the case of decreasing insulin action for the change of fat oxidation to fat storage. It could thus play an important role in the secondary prevention of insulin resistance. (Source: Wikipedia).

The German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) is a member of the Leibniz Association. It investigates the causes of diet-related diseases in order to develop new strategies for prevention and therapy and to provide dietary recommendations. Its research focus includes the causes and consequences of the metabolic syndrome, which is a combination of obesity, high blood pressure, insulin resistance and lipid metabolism disorder, as well as the role of diet in healthy aging and the biological basis of food choices and eating habits. More information at www.dife.de. In addition, the DIfE is a partner of the German Center for Diabetes Research (DZD), which was founded in 2009 and has since been funded by the BMBF. More information on the DZD can be found at www.dzd-ev.de.

The Leibniz Association is the umbrella organization for 88 independent research institutions whose spectrum encompasses the natural, engineering and environmental sciences, economics, the spatial and social sciences as well as the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, also in the overarching Leibniz research networks, as well as maintain scientific infrastructure and provide research-based services. The Leibniz Association sets priorities in knowledge transfer, in particular with the Leibniz research museums. It provides advice and information for policymakers, academia, business and industry and the general public. Leibniz Institutes collaborate intensively with universities – in the form of “Leibniz Science Campi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners in Germany and abroad. They are subject to a standard-setting, transparent and independent evaluation procedure. Due to the importance of the Leibniz Institutes for Germany as a whole, they are funded jointly by the federal government and state governments, employing some 18,100 individuals, including 9,200 researchers. The overall budget of the institutes amounts to more than EUR 1.6 billion. More information at www.leibniz-gemeinschaft.de.

Contact:

Prof. Dr. Andreas F. H. Pfeiffer
Department of Clinical Nutrition
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal/Germany
Phone: +49 (0)33200 88-2771
Phone: +49 (0)30 450514 422
email: afhp@dife.de
email: afhp@charite.de


Dr. Farnaz Keyhani-Nejad
Department of Clinical Nutrition
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal/Germany
email: Keyhani-Nejad.Farnaz@dife.de

Media contact:

Dr. Gisela Olias
Head, Press and Public Relations
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Phone: +49 (0)33200 88-2278/-2335
email: olias@dife.de
or presse@dife.de

www.dife.de 

Weitere Informationen:

http://www.dife.de/forschung/abteilungen/kurzprofil.php?abt=KLE Department of Clinical Nutrition at DIfE

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft

Further reports about: DIfE Diabetes Ernährungsforschung GLP-1 blood glucose sugar

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>