Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Purification: Plant Hemoglobin Proteins Help Plants Fix Atmospheric Nitric

13.06.2016

Scientists of Helmholtz Zentrum München have now discovered that Arabidopsis thaliana plants can fix atmospheric nitric oxide (NO) with the aid of plant hemoglobin proteins. Using this previously unknown mechanism, these plants can contribute to the improvement of air quality. The results of the research have now been published in the journal ‘Plant, Cell & Environment’.

In Germany, the emission of nitrogen oxides (NOx) amounts to approximately 1.3 million tons per year *. These emissions are mainly caused by combustion processes in industrial facilities and engines.


Increasing concentrationf of NO leads to a better growth of plants. The plant left was exposed to 0 ppm NO, the plant right to 3.0 ppm NO. Source: HMGU

In humans, the gaseous pollutants particularly irritate the mucous membranes in the respiratory organs and eyes. Until now it was assumed that plants cannot absorb atmospheric NO. Now, researchers of the Institute of Biochemical Plant Pathology (BIOP), in collaboration with staff of the former Institute of Soil Ecology (IBÖ), the Research Unit Experimental Environmental Simulation (EUS) and the Research Unit Analytical BioGeoChemistry (BGC) at Helmholtz Zentrum München have discovered the underlying mechanism that Arabidopsis thaliana plants use to draw NO directly from the air, which they subsequently fix into their nitrogen metabolism.

“We observed that fumigation with high levels of nitric oxide was not toxic, but rather actually improved plant growth,” said Dr. Christian Lindermayr of the Institute of Biochemical Plant Pathology at Helmholtz Zentrum München.

“The mechanism is believed to have originated in order to ensure the survival of plants located at sites with nitrogen deficiency,” said Dr. Gitto Kuruthukulangarakoola, first author of the study who is also a researcher at BIOP.

With regard to the air quality in cities with high concentrations of nitrogen oxides, this property of Arabidopsis thaliana plants could contribute significantly to the reduction of NO and thus improve air quality. This finding may be especially significant for future urban planning in metropolitan areas and may contribute to improved living conditions there.

Further Information

Original Publication:
Kuruthukulangarakoola, G.T. et al. Nitric oxide-fixation by non-symbiotic hemoglobin proteins in Arabidopsis thaliana under N-limited conditions, Plant Cell Environ. 2016 May 31. doi: 10.1111/pce.12773. http://onlinelibrary.wiley.com/doi/10.1111/pce.12773/full

*Source: http://www.umweltbundesamt.de/daten/luftbelastung/luftschadstoff-emissionen-in-d...

The Helmholtz Zentrum München the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en/index.html

The focal point of the research work carried out by the Institute of Biochemical Plant Pathology (BIOP) is the examination of molecular mechanisms that plants use to adapt to their environment. These include genetic and biochemical processes which control the growth, physiological state and defence mechanisms of the plants. The aim of the research is to better understand the fundamental principles and mechanisms of the interaction between plants and their environment and to develop sustainable strategies for the cultivation and use of plants to protect natural resources. http://www.helmholtz-muenchen.de/en/biop

Scientific Contact

Dr. PD. Christian Lindermayr
Helmholtz Zentrum München -
German Center for Environmental Health
Institute of Biochemical Plant Pathology
Ingolstädter Landstr. 1
85764 Neuherberg
Phone: +49 89 3187 2285
email: lindermayer@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Arabidopsis thaliana Atmospheric Pathology nitrogen oxides

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>