Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Purification: Plant Hemoglobin Proteins Help Plants Fix Atmospheric Nitric

13.06.2016

Scientists of Helmholtz Zentrum München have now discovered that Arabidopsis thaliana plants can fix atmospheric nitric oxide (NO) with the aid of plant hemoglobin proteins. Using this previously unknown mechanism, these plants can contribute to the improvement of air quality. The results of the research have now been published in the journal ‘Plant, Cell & Environment’.

In Germany, the emission of nitrogen oxides (NOx) amounts to approximately 1.3 million tons per year *. These emissions are mainly caused by combustion processes in industrial facilities and engines.


Increasing concentrationf of NO leads to a better growth of plants. The plant left was exposed to 0 ppm NO, the plant right to 3.0 ppm NO. Source: HMGU

In humans, the gaseous pollutants particularly irritate the mucous membranes in the respiratory organs and eyes. Until now it was assumed that plants cannot absorb atmospheric NO. Now, researchers of the Institute of Biochemical Plant Pathology (BIOP), in collaboration with staff of the former Institute of Soil Ecology (IBÖ), the Research Unit Experimental Environmental Simulation (EUS) and the Research Unit Analytical BioGeoChemistry (BGC) at Helmholtz Zentrum München have discovered the underlying mechanism that Arabidopsis thaliana plants use to draw NO directly from the air, which they subsequently fix into their nitrogen metabolism.

“We observed that fumigation with high levels of nitric oxide was not toxic, but rather actually improved plant growth,” said Dr. Christian Lindermayr of the Institute of Biochemical Plant Pathology at Helmholtz Zentrum München.

“The mechanism is believed to have originated in order to ensure the survival of plants located at sites with nitrogen deficiency,” said Dr. Gitto Kuruthukulangarakoola, first author of the study who is also a researcher at BIOP.

With regard to the air quality in cities with high concentrations of nitrogen oxides, this property of Arabidopsis thaliana plants could contribute significantly to the reduction of NO and thus improve air quality. This finding may be especially significant for future urban planning in metropolitan areas and may contribute to improved living conditions there.

Further Information

Original Publication:
Kuruthukulangarakoola, G.T. et al. Nitric oxide-fixation by non-symbiotic hemoglobin proteins in Arabidopsis thaliana under N-limited conditions, Plant Cell Environ. 2016 May 31. doi: 10.1111/pce.12773. http://onlinelibrary.wiley.com/doi/10.1111/pce.12773/full

*Source: http://www.umweltbundesamt.de/daten/luftbelastung/luftschadstoff-emissionen-in-d...

The Helmholtz Zentrum München the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en/index.html

The focal point of the research work carried out by the Institute of Biochemical Plant Pathology (BIOP) is the examination of molecular mechanisms that plants use to adapt to their environment. These include genetic and biochemical processes which control the growth, physiological state and defence mechanisms of the plants. The aim of the research is to better understand the fundamental principles and mechanisms of the interaction between plants and their environment and to develop sustainable strategies for the cultivation and use of plants to protect natural resources. http://www.helmholtz-muenchen.de/en/biop

Scientific Contact

Dr. PD. Christian Lindermayr
Helmholtz Zentrum München -
German Center for Environmental Health
Institute of Biochemical Plant Pathology
Ingolstädter Landstr. 1
85764 Neuherberg
Phone: +49 89 3187 2285
email: lindermayer@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Arabidopsis thaliana Atmospheric Pathology nitrogen oxides

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>