Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Purification: Plant Hemoglobin Proteins Help Plants Fix Atmospheric Nitric

13.06.2016

Scientists of Helmholtz Zentrum München have now discovered that Arabidopsis thaliana plants can fix atmospheric nitric oxide (NO) with the aid of plant hemoglobin proteins. Using this previously unknown mechanism, these plants can contribute to the improvement of air quality. The results of the research have now been published in the journal ‘Plant, Cell & Environment’.

In Germany, the emission of nitrogen oxides (NOx) amounts to approximately 1.3 million tons per year *. These emissions are mainly caused by combustion processes in industrial facilities and engines.


Increasing concentrationf of NO leads to a better growth of plants. The plant left was exposed to 0 ppm NO, the plant right to 3.0 ppm NO. Source: HMGU

In humans, the gaseous pollutants particularly irritate the mucous membranes in the respiratory organs and eyes. Until now it was assumed that plants cannot absorb atmospheric NO. Now, researchers of the Institute of Biochemical Plant Pathology (BIOP), in collaboration with staff of the former Institute of Soil Ecology (IBÖ), the Research Unit Experimental Environmental Simulation (EUS) and the Research Unit Analytical BioGeoChemistry (BGC) at Helmholtz Zentrum München have discovered the underlying mechanism that Arabidopsis thaliana plants use to draw NO directly from the air, which they subsequently fix into their nitrogen metabolism.

“We observed that fumigation with high levels of nitric oxide was not toxic, but rather actually improved plant growth,” said Dr. Christian Lindermayr of the Institute of Biochemical Plant Pathology at Helmholtz Zentrum München.

“The mechanism is believed to have originated in order to ensure the survival of plants located at sites with nitrogen deficiency,” said Dr. Gitto Kuruthukulangarakoola, first author of the study who is also a researcher at BIOP.

With regard to the air quality in cities with high concentrations of nitrogen oxides, this property of Arabidopsis thaliana plants could contribute significantly to the reduction of NO and thus improve air quality. This finding may be especially significant for future urban planning in metropolitan areas and may contribute to improved living conditions there.

Further Information

Original Publication:
Kuruthukulangarakoola, G.T. et al. Nitric oxide-fixation by non-symbiotic hemoglobin proteins in Arabidopsis thaliana under N-limited conditions, Plant Cell Environ. 2016 May 31. doi: 10.1111/pce.12773. http://onlinelibrary.wiley.com/doi/10.1111/pce.12773/full

*Source: http://www.umweltbundesamt.de/daten/luftbelastung/luftschadstoff-emissionen-in-d...

The Helmholtz Zentrum München the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en/index.html

The focal point of the research work carried out by the Institute of Biochemical Plant Pathology (BIOP) is the examination of molecular mechanisms that plants use to adapt to their environment. These include genetic and biochemical processes which control the growth, physiological state and defence mechanisms of the plants. The aim of the research is to better understand the fundamental principles and mechanisms of the interaction between plants and their environment and to develop sustainable strategies for the cultivation and use of plants to protect natural resources. http://www.helmholtz-muenchen.de/en/biop

Scientific Contact

Dr. PD. Christian Lindermayr
Helmholtz Zentrum München -
German Center for Environmental Health
Institute of Biochemical Plant Pathology
Ingolstädter Landstr. 1
85764 Neuherberg
Phone: +49 89 3187 2285
email: lindermayer@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Arabidopsis thaliana Atmospheric Pathology nitrogen oxides

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>