Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Purification: Plant Hemoglobin Proteins Help Plants Fix Atmospheric Nitric

13.06.2016

Scientists of Helmholtz Zentrum München have now discovered that Arabidopsis thaliana plants can fix atmospheric nitric oxide (NO) with the aid of plant hemoglobin proteins. Using this previously unknown mechanism, these plants can contribute to the improvement of air quality. The results of the research have now been published in the journal ‘Plant, Cell & Environment’.

In Germany, the emission of nitrogen oxides (NOx) amounts to approximately 1.3 million tons per year *. These emissions are mainly caused by combustion processes in industrial facilities and engines.


Increasing concentrationf of NO leads to a better growth of plants. The plant left was exposed to 0 ppm NO, the plant right to 3.0 ppm NO. Source: HMGU

In humans, the gaseous pollutants particularly irritate the mucous membranes in the respiratory organs and eyes. Until now it was assumed that plants cannot absorb atmospheric NO. Now, researchers of the Institute of Biochemical Plant Pathology (BIOP), in collaboration with staff of the former Institute of Soil Ecology (IBÖ), the Research Unit Experimental Environmental Simulation (EUS) and the Research Unit Analytical BioGeoChemistry (BGC) at Helmholtz Zentrum München have discovered the underlying mechanism that Arabidopsis thaliana plants use to draw NO directly from the air, which they subsequently fix into their nitrogen metabolism.

“We observed that fumigation with high levels of nitric oxide was not toxic, but rather actually improved plant growth,” said Dr. Christian Lindermayr of the Institute of Biochemical Plant Pathology at Helmholtz Zentrum München.

“The mechanism is believed to have originated in order to ensure the survival of plants located at sites with nitrogen deficiency,” said Dr. Gitto Kuruthukulangarakoola, first author of the study who is also a researcher at BIOP.

With regard to the air quality in cities with high concentrations of nitrogen oxides, this property of Arabidopsis thaliana plants could contribute significantly to the reduction of NO and thus improve air quality. This finding may be especially significant for future urban planning in metropolitan areas and may contribute to improved living conditions there.

Further Information

Original Publication:
Kuruthukulangarakoola, G.T. et al. Nitric oxide-fixation by non-symbiotic hemoglobin proteins in Arabidopsis thaliana under N-limited conditions, Plant Cell Environ. 2016 May 31. doi: 10.1111/pce.12773. http://onlinelibrary.wiley.com/doi/10.1111/pce.12773/full

*Source: http://www.umweltbundesamt.de/daten/luftbelastung/luftschadstoff-emissionen-in-d...

The Helmholtz Zentrum München the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en/index.html

The focal point of the research work carried out by the Institute of Biochemical Plant Pathology (BIOP) is the examination of molecular mechanisms that plants use to adapt to their environment. These include genetic and biochemical processes which control the growth, physiological state and defence mechanisms of the plants. The aim of the research is to better understand the fundamental principles and mechanisms of the interaction between plants and their environment and to develop sustainable strategies for the cultivation and use of plants to protect natural resources. http://www.helmholtz-muenchen.de/en/biop

Scientific Contact

Dr. PD. Christian Lindermayr
Helmholtz Zentrum München -
German Center for Environmental Health
Institute of Biochemical Plant Pathology
Ingolstädter Landstr. 1
85764 Neuherberg
Phone: +49 89 3187 2285
email: lindermayer@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Arabidopsis thaliana Atmospheric Pathology nitrogen oxides

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>