Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aerobic processes compete for nitrogen in oxygen minimum zones


At the margins of oxygen minimum zones (OMZs) at ultralow oxygen concentrations, aerobic ammonium and nitrite oxidizers compete for nitrogen with anaerobic microorganisms. Thus they play an important but so far overlooked role in controlling nitrogen loss in OMZs.

An international group of researchers including Laura Bristow from the Max Planck Institute for Marine Microbiology in Bremen unveiled a surprising feature in the oceanic nitrogen cycle. The researchers were working in oxygen minimum zones (OMZs), which are hot spots in the nitrogen cycle. OMZs are areas in the ocean that contain very little or no oxygen. They are a natural phenomenon, but might be expanding due to anthropogenic influence.

Methodically, this was pioneering work: Without highly-sensitive oxygen sensorsit would not have been possible. The developers of the so-called STOX sensors supported Bristow in this study.

Laura Tiano

Bristow and colleagues discovered that tiny amounts of oxygen are sufficient to drive processes that typically occur in more oxygenated waters. These processes are ammonium oxidation and nitrite oxidation (AmOx and NitOx).

“If only a smidgen of oxygen was present, the ammonium and nitrite oxidizers instantly take advantage”, Bristow says. At the fringes of OMZs and during sporadic intrusions of oxygen, AmOx and NitOx can become very important. They are able to use the few available oxygen molecules around them and oxidize nitrogen. The microorganisms from the OMZ miss out. As a consequence, much less nitrogen is available for anaerobic processes such as anammox and denitrification.

This is important for the nitrogen cycle as, for example, anammox bacteria are very active in OMZs, where they transform nitrogen compounds to unreactive N2 gas. The ammonium and nitrite oxidizers, however, keep the nitrogen in an available form. Their activity at ultralow oxygen concentrations thus influences nitrogen cycling in the ocean, which itself has a major influence on the marine carbon cycle.

„We never had the technology before to look at AmOx and NitOx at the relevant oxygen concentrations”, says Bristow, explaining the motivation for this study. “We wanted to know how much these “aerobic” processes overlapped with “anaerobic” processes in OMZs and investigate their potential to control nitrogen loss”. Now Bristow and colleagues clearly show: AmOx und NitOx have an exceptionally high affinity for oxygen.

„Next we need to include AmOX and NitOx in our OMZ models”, Bristow looks into the future. First, the scientists want to take a closer look at the involved organisms. „I hope that more of these organisms will either be isolated, or that we can gain more data about them using molecular techniques. Both would allow us to further investigate how they function.”

Additional information:
As an essential nutrient, nitrogen plays a critical role in regulating oceanic primary productivity. Microorganisms cause nitrogen to be cycled between many different forms (ammonium, nitrate, nitrite, N2 gas). Some forms of nitrogen are available to organisms, others aren’t and a number of these transformations can only occur when oxygen is present. It’s a complex puzzle, not all parts of which are understood to date.

Original publication
Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Laura A. Bristow, Tage Dalsgaard, Laura Tiano, Daniel B. Mills, Anthony Bertagnolli, Jody J. Wright, 
Steven J. Hallam, Osvaldo Ulloa, Donald E. Canfield, Niels Peter Revsbech and Bo Thamdrup. PNAS. 

Participating institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany
University of Southern Denmark, Odense, Denmark
Aarhus University, Aarhus, Denmark
Universidad de Concepción, Casilla, Concepción, Chile
University of British Columbia, Vancouver, Canada

Weitere Informationen:

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>