Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Advances in Molecular Electronics: Lights On – Molecule On


Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also more energy efficient - components or sensors: “Single molecules are currently the smallest imaginable components capable of being integrated into a processor.”

Lights on – molecule on. For the first time a light beam switches a single molecule to closed state (red atoms). At the ends of the diarylethene molecule gold electrodes are attached. This way, the molecule functions as an electrical switch.

Picture: HZDR/Pfefferkorn

Scientists have yet to succeed in tailoring a molecule so that it can conduct an electrical current and that this current can be selectively turned on and off like an electrical switch.

This requires a molecule in which an otherwise strong bond between individual atoms dissolves in one location – and forms again precisely when energy is pumped into the structure. Dr. Jannic Wolf, chemist at the University of Konstanz, discovered through complex experiments that a particular diarylethene compound is an eligible candidate.

The advantages of this molecule, approximately three nanometres in size, are that it rotates very little when a point in its structure opens and it possesses two nanowires that can be used as contacts. The diarylethene is an insulator when open and becomes a conductor when closed. It thus exhibits a different physical behaviour, a behaviour that the scientists from Konstanz and Dresden were able to demonstrate with certainty in numerous reproducible measurements for the first time in a single molecule.

A computer from a test-tube

A special feature of these molecular electronics is that they take place in a fluid within a test-tube, where the molecules are contacted within the solution. In order to ascertain what effects the solution conditions have on the switching process, it was therefore necessary to systematically test various solvents.

The diarylethene needs to be attached at the end of the nanowires to electrodes so that the current can flow. “We developed a nanotechnology at the HZDR that relies on extremely thin tips made of very few gold atoms. We stretch the switchable diarylethene compound between them,” explains Dr. Erbe.

When a beam of light then hits the molecule, it switches from its open to its closed state, resulting in a flowing current. “For the first time ever we could switch on a single contacted molecule and prove that this precise molecule becomes a conductor on which we have used the light beam," says Dr. Erbe, pleased with the results.

"We have also characterized the molecular switching mechanism in extremely high detail, which is why I believe that we have succeeded in making an important step toward a genuine molecular electronic component.”

Switching off, however, does not yet work with the contacted diarylethene, but the physicist is confident: “Our colleagues from the HZDR theory group are computing how precisely the molecule must rotate so that the current is interrupted. Together with the chemists from Konstanz, we will be able to accordingly implement the design and synthesis for the molecule.”

However, a great deal of patience is required because it’s a matter of basic research. The diarylethene molecule contact using electron-beam lithography and the subsequent measurements alone lasted three long years. Approximately ten years ago, a working group at the University of Groningen in the Netherlands had already managed to construct a switch that could interrupt the current. The off-switch also worked only in one direction, but what couldn't be proven at the time with certainty was that the change in conductivity was bound to a single molecule.

Nano-electronics in Dresden

One area of research focus in Dresden is what is known as self-organization. “DNA molecules are, for instance, able to arrange themselves into structures without any outside assistance. If we succeed in constructing logical switches from self-organizing molecules, then computers of the future will come from test-tubes," Dr. Erbe prophesizes.

The enormous advantages of this new technology are obvious: billion-euro manufacturing plants that are necessary for manufacturing today’s microelectronics could be a thing of the past. The advantages lie not only in production but also in operating the new molecular components, as they both will require very little energy.

With the Helmholtz Research School NANONET, the conditions for investigating and developing the molecular electronics of tomorrow are quite positive in Dresden. In addition to the HZDR, the Technische Universität Dresden, Leibniz-Institute of Polymer Research Dresden (IPF), the Fraunhofer Institute for Ceramic Technology and Systems (IKTS) and the NaMLab gGmbH all participate in running the structured doctoral program.

T. Sendler, K. Luka-Guth, M. Wieser, Lokamani, J. Wolf, M. Helm, S. Gemming, J. Kerbusch, E. Scheer, T. Huhn, A. Erbe: “Light-Induced Switching of Tunable Single Molecule Junctions”, in Advanced Science, published online on April 16, 2015, DOI: 10.1002/advs.201500017

Further Information:
Dr. Artur Erbe | Institute of Ion Beam Physics and Materials Research at the HZDR
Phone: +49 351 260 2366 | Email:

Prof. Dr. Elke Scheer | University of Konstanz | Department of Physics
Tel. +49 7531 88 4712 | Email:

Media Contact:
Dr. Christine Bohnet | Public Relations Officer
Bautzner Landstr. 400 | 01328 Dresden | Germany
Phone: +49 351 260 2450 | Email:

University of Konstanz | Communications and Marketing
Universitätsstraße 10 | 78464 Konstanz
Phone: +49 7531 88 3603 | Email:

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It has been a member of the Helmholtz Association, Germany’s largest research organization, since 2011. Several large-scale research facilities provide unique research opportunities. These facilities are also accessible to external users. The HZDR employs about 1,000 people – approximately 500 of whom are scientists, including 150 doctoral candidates.

Weitere Informationen:

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>