Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016

Zebrafish have a wonderful characteristic trait: they have extraordinary regenerative powers that go beyond the ability to regrow injured extremities. Even heart injuries heal up completely in this fish species. For cardiologists, who regularly treat heart attack patients, this would be a dream come true. Scientists at Utrecht University and Ulm University now have unravelled a central molecular mechanism that coordinates this healing process.

Zebrafish have a wonderful characteristic trait: they have extraordinary regenerative powers that go beyond the ability to regrow injured extremities. Even heart injuries heal up completely in this fish species. For cardiologists, who regularly treat heart attack patients, this would be a dream come true. Scientists at Utrecht University and Ulm University now have unravelled a central molecular mechanism that coordinates this healing process.


In hearts with inhibited BMP signals the wound is bigger (image in the middle), while hearts where BMP signalling has been amplified show smaller wounds (right).

Chi-Chung Wu

‘The injured tissue regenerates via the proliferation of heart muscle cells located near the wound border,’ Professor Gilbert Weidinger from the Institute for Biochemistry and Molecular Biology at Ulm University explains. The international research team – a collaboration between Weidinger’s lab and scientists at the Utrecht University Hospital – was able to show that the cell proliferation is regulated by a particular family of proteins: the so-called bone morphogenetic proteins (BMPs).

BMPs are signalling proteins that play an important role in cell-to-cell communication. The researchers were able to demonstrate that BMPs are activated particularly along the border between healthy and injured tissue.

The molecular biologists developed a special method for RNA sequencing (tomo seq) which allows them to locate the activity of various genes in the wound area and the adjacent tissue. ‘This generates a genome-wide atlas of gene expression and activity patterns, showing significant regional differences. This sheds light on which genes and cell signals are active in a regenerating heart both in the healthy and the injured tissue, or rather exactly along the border of the wound,’ says Chi-Chung Wu.

The PhD student from Hong Kong conducts research at Ulm University. Together with his colleague from Utrecht, Fabian Kruse, he is first author of the study, which has been published in the renowned journal Developmental Cell (2016/36: 36--49).

Using this sequencing technique, the scientists found that BMP signalling is activated by heart muscle cells in the wound border zone where healthy and injured tissue come together. With the help of transgenic zebrafish in which the BMP signalling pathway was either inhibited or amplified, the researchers were able to selectively influence the regeneration process. In the genetically modified animals where the BMP signalling pathway had been blocked, heart muscle cell proliferation was reduced considerably. In those animals with overly active BMP the regeneration was actually enhanced.

‘Surprisingly, this signalling pathway plays no role in cell division during embryonic heart development, only in heart regeneration due to injury,’ the scientists say in astonishment. This means that the tissue formation in the fish heart during embryonic development and during regeneration is regulated by two different processes.

There is another finding that astounds the researchers: ‘The BMP signalling is also active in the injured hearts of mice, but there the heart cells react in a dramatically different way: they die. Here the BMP doesn’t promote healing but causes the damaged cells to commit suicide,’ says Professor Jeroen Bakkers from Hubrecht Institute at the Utrecht University Hospital. He is, like Prof. Weidinger, co-corresponding author of this study.

The scientists now want to work out why heart cells in zebrafish and in mammals like mice react so differently, and which processes are ultimately responsible.

If mammals – which humans are classified as taxonomically – were able to replace injured heart cells in the same way as zebrafish there would be new hope for heart attack patients. The reason why a myocardial infarction, as this life-threatening event is also called, is so dangerous for humans is because the dying heart muscle cells cannot be replaced. This leads to extensive scarring of the heart muscle and causes the organ to lose strength. The medical relevance of this project is therefore tremendous. ‘Maybe one day it will be possible to considerably improve the regenerative capacity of human heart tissue with medication or therapies that have been developed on the basis of such fundamental research findings,’ the researchers hope.

Further information:
Prof. Dr. Gilbert Weidinger; Email: gilbert.weidinger@uni-ulm.de;

Weitere Informationen:

http://www.cell.com/developmental-cell/abstract/S1534-5807%2815%2900795-9

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>